BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37708138)

  • 41. A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae.
    Dermauw W; Osborne EJ; Clark RM; Grbić M; Tirry L; Van Leeuwen T
    BMC Genomics; 2013 May; 14():317. PubMed ID: 23663308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional analysis of four upregulated carboxylesterase genes associated with fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval).
    Wei P; Li J; Liu X; Nan C; Shi L; Zhang Y; Li C; He L
    Pest Manag Sci; 2019 Jan; 75(1):252-261. PubMed ID: 29877064
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acaricide-Mediated Competition Between the Sibling Species Tetranychus cinnabarinus and Tetranychus urticae.
    Lu W; Hu Y; Wei P; Xu Q; Bowman C; Li M; He L
    J Econ Entomol; 2018 May; 111(3):1346-1353. PubMed ID: 29490054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Current knowledge of detoxification mechanisms of xenobiotic in honey bees.
    Gong Y; Diao Q
    Ecotoxicology; 2017 Jan; 26(1):1-12. PubMed ID: 27819118
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Induction of phase I, II and III drug metabolism/transport by xenobiotics.
    Xu C; Li CY; Kong AN
    Arch Pharm Res; 2005 Mar; 28(3):249-68. PubMed ID: 15832810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel and selective acetylcholinesterase inhibitors for Tetranychus cinnabarinus (Acari: Tetranychidae).
    Bu C; Peng B; Cao Y; Wang X; Chen Q; Li J; Shi G
    Insect Biochem Mol Biol; 2015 Nov; 66():129-35. PubMed ID: 26520174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nuclear hormone receptors: Roles of xenobiotic detoxification and sterol homeostasis in healthy aging.
    Hoffmann JM; Partridge L
    Crit Rev Biochem Mol Biol; 2015; 50(5):380-92. PubMed ID: 26383043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alterations in xenobiotic metabolism in the long-lived Little mice.
    Amador-Noguez D; Dean A; Huang W; Setchell K; Moore D; Darlington G
    Aging Cell; 2007 Aug; 6(4):453-70. PubMed ID: 17521389
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Laboratory selection, resistance risk assessment, multi-resistance, and management of Tetranychus urticae Koch to bifenthrin, bifenazate and cyflumetofen on cowpea.
    Liu Z; Zhou L; Yao Q; Liu Y; Bi X; Huang J
    Pest Manag Sci; 2020 May; 76(5):1912-1919. PubMed ID: 31840877
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional analysis of an upregulated calmodulin gene related to the acaricidal activity of curcumin against Tetranychus cinnabarinus (Boisduval).
    Zhou H; Guo F; Luo J; Zhang Y; Liu J; Zhang Y; Zheng X; Wan F; Ding W
    Pest Manag Sci; 2021 Feb; 77(2):719-730. PubMed ID: 32865312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A nuclear receptor HR96-related gene underlies large trans-driven differences in detoxification gene expression in a generalist herbivore.
    Ji M; Vandenhole M; De Beer B; De Rouck S; Villacis-Perez E; Feyereisen R; Clark RM; Van Leeuwen T
    Nat Commun; 2023 Aug; 14(1):4990. PubMed ID: 37591878
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of the relationship between P-glycoprotein and abamectin resistance in Tetranychus cinnabarinus (Boisduval).
    Xu Z; Shi L; Peng J; Shen G; Wei P; Wu Q; He L
    Pestic Biochem Physiol; 2016 May; 129():75-82. PubMed ID: 27017885
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toxicity of ethanolic extracts from Lippia origanoides and Gliricidia sepium to Tetranychus cinnabarinus (Boisduval) (Acari: Tetranychidae).
    Sivira A; Sanabria ME; Valera N; Vásquez C
    Neotrop Entomol; 2011; 40(3):375-9. PubMed ID: 21710033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transgenic cotton expressing CYP392A4 double-stranded RNA decreases the reproductive ability of Tetranychus cinnabarinus.
    Shen GM; Song CG; Ao YQ; Xiao YH; Zhang YJ; Pan Y; He L
    Insect Sci; 2017 Aug; 24(4):559-568. PubMed ID: 27064066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides.
    Snoeck S; Kurlovs AH; Bajda S; Feyereisen R; Greenhalgh R; Villacis-Perez E; Kosterlitz O; Dermauw W; Clark RM; Van Leeuwen T
    Insect Biochem Mol Biol; 2019 Jul; 110():19-33. PubMed ID: 31022513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The PPARs and PXRs: nuclear xenobiotic receptors that define novel hormone signaling pathways.
    Kliewer SA; Lehmann JM; Milburn MV; Willson TM
    Recent Prog Horm Res; 1999; 54():345-67; discussion 367-8. PubMed ID: 10548883
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cross-resistance risk of the novel complex II inhibitors cyenopyrafen and cyflumetofen in resistant strains of the two-spotted spider mite Tetranychus urticae.
    Khalighi M; Tirry L; Van Leeuwen T
    Pest Manag Sci; 2014 Mar; 70(3):365-8. PubMed ID: 23997025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Laboratory assays on the effects of a novel acaricide, SYP-9625 on Tetranychus cinnabarinus (Boisduval) and its natural enemy, Neoseiulus californicus (McGregor).
    Ouyang J; Tian Y; Jiang C; Yang Q; Wang H; Li Q
    PLoS One; 2018; 13(11):e0199269. PubMed ID: 30395569
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acaricidal activities of extracts of Kochia scoparia against Tetranychus urticae, Tetranychus cinnabarinus, and Tetranychus viennensis (Acari: Tetranychidae).
    Shi GL; Zhao LL; Liu SQ; Cao H; Clarke SR; Sun JH
    J Econ Entomol; 2006 Jun; 99(3):858-63. PubMed ID: 16813322
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Specific and overlapping functions of the nuclear hormone receptors CAR and PXR in xenobiotic response.
    Wei P; Zhang J; Dowhan DH; Han Y; Moore DD
    Pharmacogenomics J; 2002; 2(2):117-26. PubMed ID: 12049174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.