These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37708200)
1. Emergence of Photomodulated Protometabolism by Short Peptide-Based Assemblies. Reja A; Pal S; Mahato K; Saha B; Delle Piane M; Pavan GM; Das D J Am Chem Soc; 2023 Sep; 145(38):21114-21121. PubMed ID: 37708200 [TBL] [Abstract][Full Text] [Related]
2. Emergence of Catalytic Triad by Short Peptide Based Nanofibrillar Assemblies. Ghosh C; Menon S; Bal S; Goswami S; Mondal J; Das D Nano Lett; 2023 Jun; 23(12):5828-5835. PubMed ID: 37310713 [TBL] [Abstract][Full Text] [Related]
3. Cross β Amyloid Nanotubes Demonstrate Promiscuous Catalysis in a Chemical Reaction Network via Co-option. Roy S; Chatterjee A; Bal S; Das D Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202210972. PubMed ID: 36198079 [TBL] [Abstract][Full Text] [Related]
4. Aldolase Cascade Facilitated by Self-Assembled Nanotubes from Short Peptide Amphiphiles. Reja A; Afrose SP; Das D Angew Chem Int Ed Engl; 2020 Mar; 59(11):4329-4334. PubMed ID: 31920004 [TBL] [Abstract][Full Text] [Related]
5. Site-selective peptide bond hydrolysis and ligation in water by short peptide-based assemblies. Singh A; Chakraborty J; Pal S; Das D Proc Natl Acad Sci U S A; 2024 Jul; 121(31):e2321396121. PubMed ID: 39042686 [TBL] [Abstract][Full Text] [Related]
6. Emergence of a short peptide based reductase via activation of the model hydride rich cofactor. Chatterjee A; Goswami S; Kumar R; Laha J; Das D Nat Commun; 2024 May; 15(1):4515. PubMed ID: 38802430 [TBL] [Abstract][Full Text] [Related]
7. Systems chemistry of peptide-assemblies for biochemical transformations. Chatterjee A; Reja A; Pal S; Das D Chem Soc Rev; 2022 Apr; 51(8):3047-3070. PubMed ID: 35316323 [TBL] [Abstract][Full Text] [Related]
8. Nonequilibrium Catalytic Supramolecular Assemblies of Melamine- and Imidazole-Based Dynamic Building Blocks. Afrose SP; Mahato C; Sharma P; Roy L; Das D J Am Chem Soc; 2022 Jan; 144(2):673-678. PubMed ID: 34990140 [TBL] [Abstract][Full Text] [Related]
9. Evolution of a designed retro-aldolase leads to complete active site remodeling. Giger L; Caner S; Obexer R; Kast P; Baker D; Ban N; Hilvert D Nat Chem Biol; 2013 Aug; 9(8):494-8. PubMed ID: 23748672 [TBL] [Abstract][Full Text] [Related]
11. Improving upon nature: active site remodeling produces highly efficient aldolase activity toward hydrophobic electrophilic substrates. Cheriyan M; Toone EJ; Fierke CA Biochemistry; 2012 Feb; 51(8):1658-68. PubMed ID: 22316217 [TBL] [Abstract][Full Text] [Related]
12. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases. Zgiby SM; Thomson GJ; Qamar S; Berry A Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619 [TBL] [Abstract][Full Text] [Related]
13. Structure of 2-keto-3-deoxy-6-phosphogluconate aldolase. 3. Sequence of a hexadecapeptide containing the azomethine-forming lysine residue. Robertson DC; Altekar WW; Wood WA J Biol Chem; 1971 Apr; 246(7):2084-90. PubMed ID: 5576072 [No Abstract] [Full Text] [Related]
14. Natural Radioactive Environments as Sources of Local Disequilibrium for the Emergence of Life. Altair T; Sartori LM; Rodrigues F; de Avellar MGB; Galante D Astrobiology; 2020 Dec; 20(12):1489-1497. PubMed ID: 32907342 [TBL] [Abstract][Full Text] [Related]
15. An improved flurogenic probe for high-throughput screening of 2-deoxyribose aldolases. Fei H; Xu G; Wu JP; Yang LR Biochem Biophys Res Commun; 2015 May; 460(3):826-30. PubMed ID: 25824041 [TBL] [Abstract][Full Text] [Related]
16. Identification of the bromopyruvate-sensitive glutamate within the active site of 2-keto-3-deoxygluconate-6-P aldolase. Meloche HP; Monti CT; Hogue-Angeletti RA Biochem Biophys Res Commun; 1978 Oct; 84(3):589-94. PubMed ID: 718702 [No Abstract] [Full Text] [Related]
17. [Separation and screening of antioxidant peptides from Xue Y; Guo R; Zhang B Se Pu; 2020 Dec; 38(12):1431-1439. PubMed ID: 34213258 [TBL] [Abstract][Full Text] [Related]
18. Enzyme engineering improves catalytic efficiency and enantioselectivity of hydroxynitrile lyase for promiscuous retro-nitroaldolase activity. Vishnu Priya B; Sreenivasa Rao DH; Gilani R; Lata S; Rai N; Akif M; Kumar Padhi S Bioorg Chem; 2022 Mar; 120():105594. PubMed ID: 35007952 [TBL] [Abstract][Full Text] [Related]
19. Temporal Self-Regulation of Mechanical Properties via Catalytic Amyloid Polymers of a Short Peptide. Bal S; Ghosh C; Parvin P; Das D Nano Lett; 2023 Nov; 23(21):9988-9994. PubMed ID: 37831889 [TBL] [Abstract][Full Text] [Related]
20. Actin filament- and Wiskott-Aldrich syndrome protein-binding sites on fructose-1,6-bisphosphate aldolase are functionally distinct from the active site. Hui MH; Rhine K; Tolan DR Cytoskeleton (Hoboken); 2021 Apr; 78(4):129-141. PubMed ID: 33210455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]