These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 37708780)
1. 3D interconnected porous PMMA scaffold integrating with advanced nanostructured CaP-based biomaterials for rapid bone repair and regeneration. Elakkiya K; Bargavi P; Balakumar S J Mech Behav Biomed Mater; 2023 Nov; 147():106106. PubMed ID: 37708780 [TBL] [Abstract][Full Text] [Related]
2. Development of Bioactive Hybrid Poly(lactic acid)/Poly(methyl methacrylate) (PLA/PMMA) Electrospun Fibers Functionalized with Bioglass Nanoparticles for Bone Tissue Engineering Applications. Álvarez-Carrasco F; Varela P; Sarabia-Vallejos MA; García-Herrera C; Saavedra M; Zapata PA; Zárate-Triviño D; Martínez JJ; Canales DA Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 38999953 [TBL] [Abstract][Full Text] [Related]
3. Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds. Bose S; Bhattacharjee A; Banerjee D; Boccaccini AR; Bandyopadhyay A Addit Manuf; 2021 Apr; 40():. PubMed ID: 34692425 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical structures of β-TCP/45S5 bioglass hybrid scaffolds prepared by gelcasting. Lopes JH; Magalhães JA; Gouveia RF; Bertran CA; Motisuke M; Camargo SEA; Trichês ES J Mech Behav Biomed Mater; 2016 Sep; 62():10-23. PubMed ID: 27161958 [TBL] [Abstract][Full Text] [Related]
5. Alginate-Sr/Mg Containing Bioactive Glass Scaffolds: The Characterization of a New 3D Composite for Bone Tissue Engineering. Guagnini B; Medagli B; Zumbo B; Cannillo V; Turco G; Porrelli D; Bellucci D J Funct Biomater; 2024 Jul; 15(7):. PubMed ID: 39057304 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405 [TBL] [Abstract][Full Text] [Related]
7. Generation of graphene oxide and nano-bioglass based scaffold for bone tissue regeneration. Kumari S; Singh D; Srivastava P; Singh BN; Mishra A Biomed Mater; 2022 Sep; 17(6):. PubMed ID: 36113451 [TBL] [Abstract][Full Text] [Related]
8. Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ChiCol) for bone scaffolds. Mooyen S; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Suntornsaratoon P; Krishnamra N; Tang IM; Pon-On W J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1758-1766. PubMed ID: 27184456 [TBL] [Abstract][Full Text] [Related]
9. The practical process of manufacturing poly(methyl methacrylate)-based scaffolds having high porosity and high strength. Indra A; Razi R; Jasmayeti R; Fauzan A; Wahyudi D; Handra N; Subardi A; Susanto I; Iswandi ; Purnomo MJ J Mech Behav Biomed Mater; 2023 Jun; 142():105862. PubMed ID: 37086523 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of 45S5 bioglass via sol-gel in β-TCP scaffolds: Bioactivity and antimicrobial activity evaluation. Spirandeli BR; Ribas RG; Amaral SS; Martins EF; Esposito E; Vasconcellos LMR; Campos TMB; Thim GP; Trichês ES Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112453. PubMed ID: 34857256 [TBL] [Abstract][Full Text] [Related]
12. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960 [TBL] [Abstract][Full Text] [Related]
13. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
14. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO Mubina MSK; Shailajha S; Sankaranarayanan R; Saranya L J Mech Behav Biomed Mater; 2019 Dec; 100():103379. PubMed ID: 31398691 [TBL] [Abstract][Full Text] [Related]
15. 3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds. Seidenstuecker M; Kerr L; Bernstein A; Mayr HO; Suedkamp NP; Gadow R; Krieg P; Hernandez Latorre S; Thomann R; Syrowatka F; Esslinger S Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29271932 [TBL] [Abstract][Full Text] [Related]
16. A novel nano-hydroxyapatite - PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties. G R; S B; Venkatesan B; Vellaichamy E Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():221-228. PubMed ID: 28415457 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472 [TBL] [Abstract][Full Text] [Related]
18. Enhanced bone tissue regeneration with hydrogel-based scaffolds by embedding parathyroid hormone in mesoporous bioactive glass. Sordi MB; Fredel MC; da Cruz ACC; Sharpe PT; de Souza Magini R Clin Oral Investig; 2023 Jan; 27(1):125-137. PubMed ID: 36018448 [TBL] [Abstract][Full Text] [Related]
19. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. Xie L; Yu H; Yang W; Zhu Z; Yue L J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]