BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37709005)

  • 1. Identification of hyperosmotic stress-responsive genes in Chinese hamster ovary cells via genome-wide virus-free CRISPR/Cas9 screening.
    Kim SH; Shin S; Baek M; Xiong K; Karottki KJC; Hefzi H; Grav LM; Pedersen LE; Kildegaard HF; Lewis NE; Lee JS; Lee GM
    Metab Eng; 2023 Nov; 80():66-77. PubMed ID: 37709005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinase-mediated cassette exchange-based screening of a CRISPR/Cas9 library for enhanced recombinant protein production in human embryonic kidney cells: Improving resistance to hyperosmotic stress.
    Shin S; Kim SH; Park JH; Lee JS; Lee GM
    Metab Eng; 2022 Jul; 72():247-258. PubMed ID: 35398513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide CRISPR/Cas9 Screening Unveils a Novel Target ATF7IP-SETDB1 Complex for Enhancing Difficult-to-Express Protein Production.
    Kim SH; Park JH; Shin S; Shin S; Chun D; Kim YG; Yoo J; You WK; Lee JS; Lee GM
    ACS Synth Biol; 2024 Feb; 13(2):634-647. PubMed ID: 38240694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Gene Deletion Using DNA-Free RNA-Guided Cas9 Nuclease Accelerates Adaptation of CHO Cells to Suspension Culture.
    Lee N; Shin J; Park JH; Lee GM; Cho S; Cho BK
    ACS Synth Biol; 2016 Nov; 5(11):1211-1219. PubMed ID: 26854539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
    Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H
    Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ribonucleoprotein-based decaplex CRISPR/Cas9 knockout strategy for CHO host engineering.
    Carver J; Kern M; Ko P; Greenwood-Goodwin M; Yu XC; Duan D; Tang D; Misaghi S; Auslaender S; Haley B; Yuk IH; Shen A
    Biotechnol Prog; 2022 Jan; 38(1):e3212. PubMed ID: 34538022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CRISPR/Cas9 based engineering strategy for overexpression of multiple genes in Chinese hamster ovary cells.
    Eisenhut P; Klanert G; Weinguny M; Baier L; Jadhav V; Ivansson D; Borth N
    Metab Eng; 2018 Jul; 48():72-81. PubMed ID: 29852271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide CRISPR/Cas9 knockout screening to mitigate cell growth inhibition induced by histone deacetylase inhibitors in recombinant CHO cells.
    Kim D; Kim SH; Yoon C; Lee GM
    Biotechnol Bioeng; 2024 Mar; 121(3):931-941. PubMed ID: 38013500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool.
    Ronda C; Pedersen LE; Hansen HG; Kallehauge TB; Betenbaugh MJ; Nielsen AT; Kildegaard HF
    Biotechnol Bioeng; 2014 Aug; 111(8):1604-16. PubMed ID: 24827782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized genome-wide, virus-free CRISPR screen for mammalian cells.
    Xiong K; Karottki KJC; Hefzi H; Li S; Grav LM; Li S; Spahn P; Lee JS; Ventina I; Lee GM; Lewis NE; Kildegaard HF; Pedersen LE
    Cell Rep Methods; 2021 Aug; 1(4):. PubMed ID: 34935002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo assembly and annotation of the CHOZN® GS
    Kretzmer C; Narasimhan RL; Lal RD; Balassi V; Ravellette J; Kotekar Manjunath AK; Koshy JJ; Viano M; Torre S; Zanda VM; Kumravat M; Saldanha KMR; Chandranpillai H; Nihad I; Zhong F; Sun Y; Gustin J; Borgschulte T; Liu J; Razafsky D
    Biotechnol Bioeng; 2022 Dec; 119(12):3632-3646. PubMed ID: 36073082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the CRISPR toolbox for Chinese hamster ovary cells with comprehensive tools for Mad7 genome editing.
    Rojek JB; Basavaraju Y; Nallapareddy S; Bulté DB; Baumgartner R; Schoffelen S; Grav LM; Goletz S; Pedersen LE
    Biotechnol Bioeng; 2023 Jun; 120(6):1478-1491. PubMed ID: 36864663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 as a Genome Editing Tool for Targeted Gene Integration in CHO Cells.
    Sergeeva D; Camacho-Zaragoza JM; Lee JS; Kildegaard HF
    Methods Mol Biol; 2019; 1961():213-232. PubMed ID: 30912048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the paired-Cas9 nickase and RNA-guided FokI genome editing tools in precise integration of an anti-CD52 bicistronic monoclonal antibody expression construct at Chinese hamster ovary cells 18S rDNA locus.
    Bayat H; Farahmand F; Tabatabaee SH; Shams F; Mohammadian O; Pourmaleki E; Rahimpour A
    Protein Expr Purif; 2024 May; 217():106445. PubMed ID: 38342386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated generation of gene-engineered monoclonal CHO cell lines using FluidFM nanoinjection and CRISPR/Cas9.
    Antony JS; Herranz AM; Mohammadian Gol T; Mailand S; Monnier P; Rottenberger J; Roig-Merino A; Keller B; Gowin C; Milla M; Beyer TA; Mezger M
    Biotechnol J; 2024 Apr; 19(4):e2300505. PubMed ID: 38651269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Antibody Production in Stably Transfected CHO Cells by CRISPR-Cas9-Mediated Inactivation of Genes Identified in a Large-Scale Screen with Chinese Hamster-Specific siRNAs.
    Lin PC; Liu R; Alvin K; Wahyu S; Murgolo N; Ye J; Du Z; Song Z
    Biotechnol J; 2021 Mar; 16(3):e2000267. PubMed ID: 33079482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes.
    Karottki KJC; Hefzi H; Li S; Pedersen LE; Spahn PN; Joshi C; Ruckerbauer D; Bort JAH; Thomas A; Lee JS; Borth N; Lee GM; Kildegaard HF; Lewis NE
    Metab Eng; 2021 Jul; 66():114-122. PubMed ID: 33813034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Mediated Knockout of MicroRNA-744 Improves Antibody Titer of CHO Production Cell Lines.
    Raab N; Mathias S; Alt K; Handrick R; Fischer S; Schmieder V; Jadhav V; Borth N; Otte K
    Biotechnol J; 2019 May; 14(5):e1800477. PubMed ID: 30802343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pooled CRISPR/AsCpf1 screen using paired gRNAs to induce genomic deletions in Chinese hamster ovary cells.
    Schmieder V; Novak N; Dhiman H; Nguyen LN; Serafimova E; Klanert G; Baumann M; Kildegaard HF; Borth N
    Biotechnol Rep (Amst); 2021 Sep; 31():e00649. PubMed ID: 34277363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the secretory capacity of CHO producer cells: The effect of controlled Blimp1 expression, a master transcription factor for plasma cells.
    Kim SH; Baek M; Park S; Shin S; Lee JS; Lee GM
    Metab Eng; 2022 Jan; 69():73-86. PubMed ID: 34775077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.