These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37709092)

  • 1. Comparison of the use of life cycle assessment and ecological footprint methods for evaluating environmental performances in dairy production.
    Biagetti E; Gislon G; Martella A; Zucali M; Bava L; Franco S; Sandrucci A
    Sci Total Environ; 2023 Dec; 905():166845. PubMed ID: 37709092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative emissions intensity of dairy production systems: employing different functional units in life-cycle assessment.
    Ross SA; Topp CFE; Ennos RA; Chagunda MGG
    Animal; 2017 Aug; 11(8):1381-1388. PubMed ID: 28183378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment of pasture-based dairy production systems: Current and future performance.
    Herron J; O'Brien D; Shalloo L
    J Dairy Sci; 2022 Jul; 105(7):5849-5869. PubMed ID: 35599025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of farming strategies on environmental impact of intensive dairy farms in Italy.
    Guerci M; Bava L; Zucali M; Sandrucci A; Penati C; Tamburini A
    J Dairy Res; 2013 Aug; 80(3):300-8. PubMed ID: 23806128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relating the carbon footprint of milk from Irish dairy farms to economic performance.
    O'Brien D; Hennessy T; Moran B; Shalloo L
    J Dairy Sci; 2015 Oct; 98(10):7394-407. PubMed ID: 26254524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon footprint of dairy goat milk production in New Zealand.
    Robertson K; Symes W; Garnham M
    J Dairy Sci; 2015 Jul; 98(7):4279-93. PubMed ID: 25981064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding variability in carbon footprint of smallholder dairy farms in the central highlands of Ethiopia.
    Feyissa AA; Senbeta F; Diriba D; Tolera A
    Trop Anim Health Prod; 2022 Dec; 54(6):411. PubMed ID: 36456660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversification not specialization reduces global and local environmental burdens from livestock production.
    Soteriades AD; Foskolos A; Styles D; Gibbons JM
    Environ Int; 2019 Nov; 132():104837. PubMed ID: 31450105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of nitrate and 3-nitrooxypropanol on the carbon footprints of milk from cattle produced in confined-feeding systems across regions in the United States: A life cycle analysis.
    Uddin ME; Tricarico JM; Kebreab E
    J Dairy Sci; 2022 Jun; 105(6):5074-5083. PubMed ID: 35346477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A life cycle assessment study of dairy farms in northern Germany: The influence of performance parameters on environmental efficiency.
    Drews J; Czycholl I; Krieter J
    J Environ Manage; 2020 Nov; 273():111127. PubMed ID: 32810684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementing an appropriate metric for the assessment of greenhouse gas emissions from livestock production: A national case study.
    Hörtenhuber SJ; Seiringer M; Theurl MC; Größbacher V; Piringer G; Kral I; Zollitsch WJ
    Animal; 2022 Oct; 16(10):100638. PubMed ID: 36182718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal, spatial, and management variability in the carbon footprint of New Zealand milk.
    Ledgard SF; Falconer SJ; Abercrombie R; Philip G; Hill JP
    J Dairy Sci; 2020 Jan; 103(1):1031-1046. PubMed ID: 31759588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms.
    Robert Kiefer L; Menzel F; Bahrs E
    J Environ Manage; 2015 Apr; 152():11-8. PubMed ID: 25602922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration.
    Salvador S; Corazzin M; Romanzin A; Bovolenta S
    J Environ Manage; 2017 Jul; 196():644-650. PubMed ID: 28365549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing farm size is an effective way to decrease the carbon footprint in dairy cattle production.
    Aydin O; Koknaroglu H
    Trop Anim Health Prod; 2023 Nov; 55(6):421. PubMed ID: 38010571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the impact of clinical mastitis in dairy cows on greenhouse gas emissions using a dynamic stochastic simulation model: a case study.
    Mostert PF; Bokkers EAM; de Boer IJM; van Middelaar CE
    Animal; 2019 Dec; 13(12):2913-2921. PubMed ID: 31210122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental impact of primary beef production chain in Colombia: Carbon footprint, non-renewable energy and land use using Life Cycle Assessment.
    González-Quintero R; Bolívar-Vergara DM; Chirinda N; Arango J; Pantevez H; Barahona-Rosales R; Sánchez-Pinzón MS
    Sci Total Environ; 2021 Jun; 773():145573. PubMed ID: 33940733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental performances of Sardinian dairy sheep production systems at different input levels.
    Vagnoni E; Franca A; Breedveld L; Porqueddu C; Ferrara R; Duce P
    Sci Total Environ; 2015 Jan; 502():354-61. PubMed ID: 25265396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How can farming intensification affect the environmental impact of milk production?
    Bava L; Sandrucci A; Zucali M; Guerci M; Tamburini A
    J Dairy Sci; 2014 Jul; 97(7):4579-93. PubMed ID: 24792806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional environmental assessment of dairy farms.
    Rotz CA; Stout RC; Holly MA; Kleinman PJA
    J Dairy Sci; 2020 Apr; 103(4):3275-3288. PubMed ID: 32008787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.