These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 37709219)
1. Self-healing, ultra-stretchable, and highly sensitive conductive hydrogel reinforced by sulfate polysaccharide from Enteromorpha prolifera for human motion sensing. Zhang Z; Cai X; Lv Y; Tang X; Shi N; Zhou J; Yan M; Li Y Int J Biol Macromol; 2023 Dec; 253(Pt 4):126847. PubMed ID: 37709219 [TBL] [Abstract][Full Text] [Related]
2. Effects of Enteromorpha prolifera sulfated polysaccharide and aluminium ion addition on the multifunctional property of conductive hydrogel for wearable strain sensing. Cai X; Gao H; Xu T; Lv Y; Gu Y; Yan M; Li Y Int J Biol Macromol; 2024 Oct; 277(Pt 4):134452. PubMed ID: 39102906 [TBL] [Abstract][Full Text] [Related]
3. Self-healing, antibacterial, and conductive double network hydrogel for strain sensors. Liu C; Xu Z; Chandrasekaran S; Liu Y; Wu M Carbohydr Polym; 2023 Mar; 303():120468. PubMed ID: 36657864 [TBL] [Abstract][Full Text] [Related]
4. Highly Sensitive and Robust Polysaccharide-Based Composite Hydrogel Sensor Integrated with Underwater Repeatable Self-Adhesion and Rapid Self-Healing for Human Motion Detection. Ling Q; Liu W; Liu J; Zhao L; Ren Z; Gu H ACS Appl Mater Interfaces; 2022 Jun; 14(21):24741-24754. PubMed ID: 35580208 [TBL] [Abstract][Full Text] [Related]
5. Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels. Li R; Ren J; Zhang M; Li M; Li Y; Yang W Biomacromolecules; 2024 Feb; 25(2):614-625. PubMed ID: 38241010 [TBL] [Abstract][Full Text] [Related]
6. Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor. Li X; Li X; Yan M; Wang Q Int J Biol Macromol; 2023 Jul; 242(Pt 1):124746. PubMed ID: 37148945 [TBL] [Abstract][Full Text] [Related]
7. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Huang F; Wei W; Fan Q; Li L; Zhao M; Zhou Z J Colloid Interface Sci; 2022 Jun; 615():215-226. PubMed ID: 35131502 [TBL] [Abstract][Full Text] [Related]
8. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Zheng C; Lu K; Lu Y; Zhu S; Yue Y; Xu X; Mei C; Xiao H; Wu Q; Han J Carbohydr Polym; 2020 Dec; 250():116905. PubMed ID: 33049881 [TBL] [Abstract][Full Text] [Related]
9. A Skin-Inspired Multifunctional Conductive Hydrogel with High Stretchable, Adhesive, Healable, and Decomposable Properties for Highly Sensitive Dual-Sensing of Temperature and Strain. Ge SJ; Liu SN; Gu ZZ; Xu H Small Methods; 2023 Nov; 7(11):e2300749. PubMed ID: 37572378 [TBL] [Abstract][Full Text] [Related]
10. Tremella polysaccharide-based conductive hydrogel with anti-freezing and self-healing ability for motion monitoring and intelligent interaction. Han X; Lu T; Zhang Z; Wang H; Lu S Int J Biol Macromol; 2023 Sep; 248():125987. PubMed ID: 37516220 [TBL] [Abstract][Full Text] [Related]
11. A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor. Zhao L; Ren Z; Liu X; Ling Q; Li Z; Gu H ACS Appl Mater Interfaces; 2021 Mar; 13(9):11344-11355. PubMed ID: 33620195 [TBL] [Abstract][Full Text] [Related]
12. A stretchable, self-healing, okra polysaccharide-based hydrogel for fast-response and ultra-sensitive strain sensors. Ma Y; Liu K; Lao L; Li X; Zhang Z; Lu S; Li Y; Li Z Int J Biol Macromol; 2022 Apr; 205():491-499. PubMed ID: 35182565 [TBL] [Abstract][Full Text] [Related]
13. Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application. Jiao Y; Lu Y; Lu K; Yue Y; Xu X; Xiao H; Li J; Han J J Colloid Interface Sci; 2021 Sep; 597():171-181. PubMed ID: 33866209 [TBL] [Abstract][Full Text] [Related]
14. Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors. Qin Z; Liu S; Bai J; Yin J; Li N; Jiao T Int J Biol Macromol; 2022 Nov; 220():90-96. PubMed ID: 35970366 [TBL] [Abstract][Full Text] [Related]
15. Wound Dressing Hydrogel of Jiang F; Chi Z; Ding Y; Quan M; Tian Y; Shi J; Song F; Liu C ACS Appl Mater Interfaces; 2021 Mar; 13(12):14530-14542. PubMed ID: 33729756 [TBL] [Abstract][Full Text] [Related]
16. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. Liang Y; Shen Y; Sun X; Liang H Int J Biol Macromol; 2021 Dec; 193(Pt A):629-637. PubMed ID: 34717973 [TBL] [Abstract][Full Text] [Related]
17. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Qin M; Yuan W; Zhang X; Cheng Y; Xu M; Wei Y; Chen W; Huang D Colloids Surf B Biointerfaces; 2022 Jun; 214():112482. PubMed ID: 35366577 [TBL] [Abstract][Full Text] [Related]
18. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
19. Mussel-inspired resilient hydrogels with strong skin adhesion and high-sensitivity for wearable device. Kondaveeti S; Choi G; Veerla SC; Kim S; Kim J; Lee HJ; Kuzhiumparambil U; Ralph PJ; Yeo J; Jeong HE Nano Converg; 2024 Mar; 11(1):12. PubMed ID: 38512587 [TBL] [Abstract][Full Text] [Related]
20. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors. Peng X; Wang W; Yang W; Chen J; Peng Q; Wang T; Yang D; Wang J; Zhang H; Zeng H J Colloid Interface Sci; 2022 Jul; 618():111-120. PubMed ID: 35338921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]