These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 37709232)
1. Poly(glycidyl methacrylate) modified cellulose nanocrystals and their PBAT-based nanocomposites. Arslan ON; Güntürkün D; Göksu YA; Altınbay A; Özer HÖ; Nofar M Int J Biol Macromol; 2023 Dec; 253(Pt 3):126851. PubMed ID: 37709232 [TBL] [Abstract][Full Text] [Related]
2. Morphological and Rheological Properties of PLA, PBAT, and PLA/PBAT Blend Nanocomposites Containing CNCs. Mohammadi M; Heuzey MC; Carreau PJ; Taguet A Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33801672 [TBL] [Abstract][Full Text] [Related]
3. Structure and Biocompatibility of Bioabsorbable Nanocomposites of Aliphatic-Aromatic Copolyester and Cellulose Nanocrystals. Kashani Rahimi S; Aeinehvand R; Kim K; Otaigbe JU Biomacromolecules; 2017 Jul; 18(7):2179-2194. PubMed ID: 28616970 [TBL] [Abstract][Full Text] [Related]
4. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites. Le Gars M; Bras J; Salmi-Mani H; Ji M; Dragoe D; Faraj H; Domenek S; Belgacem N; Roger P Carbohydr Polym; 2020 Apr; 234():115899. PubMed ID: 32070519 [TBL] [Abstract][Full Text] [Related]
5. Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage. Lai L; Wang S; Li J; Liu P; Wu L; Wu H; Xu J; Severtson SJ; Wang WJ Carbohydr Polym; 2020 Nov; 247():116687. PubMed ID: 32829815 [TBL] [Abstract][Full Text] [Related]
7. Multiple noncovalent interactions tailored crystallization and performance reinforcement mechanisms of Biopolyester Composites with functional Cellulose Nanocrystals. Yan L; Lu G; Abdalkarim SYH; Wang L; Chen Z; Lu W; Yu HY Int J Biol Macromol; 2024 Jan; 255():128264. PubMed ID: 37984582 [TBL] [Abstract][Full Text] [Related]
8. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Kumar M; Mohanty S; Nayak SK; Rahail Parvaiz M Bioresour Technol; 2010 Nov; 101(21):8406-15. PubMed ID: 20573502 [TBL] [Abstract][Full Text] [Related]
9. Nanocomposites of LLDPE and Surface-Modified Cellulose Nanocrystals Prepared by Melt Processing. Anžlovar A; Kunaver M; Krajnc A; Žagar E Molecules; 2018 Jul; 23(7):. PubMed ID: 30029544 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of nanocomposite of maleated poly(butylene adipate-co-terephthalate) with organoclay. Chen JH; Yang MC Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():301-8. PubMed ID: 25491991 [TBL] [Abstract][Full Text] [Related]
11. Cellulose nanocrystal driven microphase separated nanocomposites: Enhanced mechanical performance and nanostructured morphology. Zhang J; Zhang X; Li MC; Dong J; Lee S; Cheng HN; Lei T; Wu Q Int J Biol Macromol; 2019 Jun; 130():685-694. PubMed ID: 30826401 [TBL] [Abstract][Full Text] [Related]
12. Effects of molecular weight and crystallizability of polylactide on the cellulose nanocrystal dispersion quality in their nanocomposites. Vatansever E; Arslan D; Sarul DS; Kahraman Y; Nofar M Int J Biol Macromol; 2020 Jul; 154():276-290. PubMed ID: 32184137 [TBL] [Abstract][Full Text] [Related]
13. Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study. Boujemaoui A; Cobo Sanchez C; Engström J; Bruce C; Fogelström L; Carlmark A; Malmström E ACS Appl Mater Interfaces; 2017 Oct; 9(40):35305-35318. PubMed ID: 28895728 [TBL] [Abstract][Full Text] [Related]
14. The preparation and characterization of nanocomposite film reinforced by modified cellulose nanocrystals. Chen QJ; Zhou LL; Zou JQ; Gao X Int J Biol Macromol; 2019 Jul; 132():1155-1162. PubMed ID: 30981769 [TBL] [Abstract][Full Text] [Related]
15. Poly(glycidyl methacrylate)/bacterial cellulose nanocomposites: Preparation, characterization and post-modification. Faria M; Vilela C; Mohammadkazemi F; Silvestre AJD; Freire CSR; Cordeiro N Int J Biol Macromol; 2019 Apr; 127():618-627. PubMed ID: 30695728 [TBL] [Abstract][Full Text] [Related]
16. Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites. Cheng D; Wei P; Zhang L; Cai J RSC Adv; 2018 Jul; 8(48):27045-27053. PubMed ID: 35539974 [TBL] [Abstract][Full Text] [Related]
17. Surface modification of the cellulose nanocrystals through vinyl silane grafting. Dhali K; Daver F; Cass P; Adhikari B Int J Biol Macromol; 2022 Mar; 200():397-408. PubMed ID: 35041891 [TBL] [Abstract][Full Text] [Related]
18. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry. Rosilo H; Kontturi E; Seitsonen J; Kolehmainen E; Ikkala O Biomacromolecules; 2013 May; 14(5):1547-54. PubMed ID: 23506469 [TBL] [Abstract][Full Text] [Related]
19. Cellulose Nanocrystal (CNC)-Latex Nanocomposites: Effect of CNC Hydrophilicity and Charge on Rheological, Mechanical, and Adhesive Properties. Pakdel AS; Niinivaara E; Cranston ED; Berry RM; Dubé MA Macromol Rapid Commun; 2021 Feb; 42(3):e2000448. PubMed ID: 33047439 [TBL] [Abstract][Full Text] [Related]
20. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Kan KH; Li J; Wijesekera K; Cranston ED Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]