These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37709484)

  • 21. [Application of novel quantum dot-based molecularly imprinted fluorescence sensor in rapid detection].
    Ma J; Lian Z; He C; Wang J; Yu R
    Se Pu; 2021 Aug; 39(8):775-780. PubMed ID: 34212579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photostability of Semiconductor Quantum Dots in Response to UV Exposure.
    Bailes J
    Methods Mol Biol; 2020; 2118():343-349. PubMed ID: 32152991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum dot lipid oligonucleotide bioconjugates: toward a new anti-microRNA nanoplatform.
    Aimé A; Beztsinna N; Patwa A; Pokolenko A; Bestel I; Barthélémy P
    Bioconjug Chem; 2013 Aug; 24(8):1345-55. PubMed ID: 23888900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas-Based MicroRNA Biosensors.
    Zhang Q; Zhang X; Zou X; Ma F; Zhang CY
    Chemistry; 2023 Mar; 29(16):e202203412. PubMed ID: 36477884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing.
    Wang J; Wen J; Yan H
    Chem Asian J; 2021 Jan; 16(2):114-128. PubMed ID: 33289286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and separation of semiconductor quantum dots and their conjugates by capillary electrophoresis.
    Sang F; Huang X; Ren J
    Electrophoresis; 2014 Mar; 35(6):793-803. PubMed ID: 24375522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters.
    Dembele F; Tasso M; Trapiella-Alfonso L; Xu X; Hanafi M; Lequeux N; Pons T
    ACS Appl Mater Interfaces; 2017 May; 9(21):18161-18169. PubMed ID: 28467039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanomaterials promote the fast development of electrochemical MiRNA biosensors.
    Ouyang R; Huang Y; Ma Y; Feng M; Liu X; Geng C; Zhao Y; Zhou S; Liu B; Miao Y
    RSC Adv; 2024 May; 14(25):17929-17944. PubMed ID: 38836170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent achievements and advances in optical and electrochemical aptasensing detection of ATP based on quantum dots.
    Khojastehnezhad A; Taghavi F; Yaghoobi E; Ramezani M; Alibolandi M; Abnous K; Taghdisi SM
    Talanta; 2021 Dec; 235():122753. PubMed ID: 34517621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.
    Yu WW
    Expert Opin Biol Ther; 2008 Oct; 8(10):1571-81. PubMed ID: 18774924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor.
    Zhang Y; Zhang CY
    Anal Chem; 2012 Jan; 84(1):224-31. PubMed ID: 22103863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic quenching and enhancement: metal-quantum dot nanohybrids for fluorescence biosensing.
    Hildebrandt N; Lim M; Kim N; Choi DY; Nam JM
    Chem Commun (Camb); 2023 Feb; 59(17):2352-2380. PubMed ID: 36727288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes.
    Rowland CE; Susumu K; Stewart MH; Oh E; Mäkinen AJ; O'Shaughnessy TJ; Kushto G; Wolak MA; Erickson JS; Efros AL; Huston AL; Delehanty JB
    Nano Lett; 2015 Oct; 15(10):6848-54. PubMed ID: 26414396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Preparing of semiconductor quantum dots-Smad2 monoclonal antibody fluorescent probes and testing of its related properties].
    Yang K; Sun DP; Chen R
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2008 Oct; 26(5):541-5. PubMed ID: 19007081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Affinity biosensors developed with quantum dots in microfluidic systems.
    Şahin S; Ünlü C; Trabzon L
    Emergent Mater; 2021; 4(1):187-209. PubMed ID: 33718778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum Dots: A Promising Fluorescent Label for Probing Virus Trafficking.
    Wang ZG; Liu SL; Pang DW
    Acc Chem Res; 2021 Jul; 54(14):2991-3002. PubMed ID: 34180662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofunctional quantum dots: controlled conjugation for multiplexed biosensors.
    Hildebrandt N
    ACS Nano; 2011 Jul; 5(7):5286-90. PubMed ID: 21744794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum Dots as Theranostic Agents: Recent Advancements, Surface Modifications, and Future Applications.
    Phafat B; Bhattacharya S
    Mini Rev Med Chem; 2023; 23(12):1257-1272. PubMed ID: 35382722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications.
    Sharma AS; Ali S; Sabarinathan D; Murugavelu M; Li H; Chen Q
    Compr Rev Food Sci Food Saf; 2021 Nov; 20(6):5765-5801. PubMed ID: 34601802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-excited double-emission CdTe@CdS quantum dots for use in a fluorometric hybridization assay for multiple tumor-related microRNAs.
    Xiang L; Zhang F; Feng J; Chen C; Cai C
    Mikrochim Acta; 2020 Jan; 187(2):134. PubMed ID: 31950277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.