These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37709566)

  • 21. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells.
    Lau OS; Davies KA; Chang J; Adrian J; Rowe MH; Ballenger CE; Bergmann DC
    Science; 2014 Sep; 345(6204):1605-9. PubMed ID: 25190717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of polarity protein BASL and the capacity for stomatal lineage asymmetric divisions.
    Nir I; Amador G; Gong Y; Smoot NK; Cai L; Shohat H; Bergmann DC
    Curr Biol; 2022 Jan; 32(2):329-337.e5. PubMed ID: 34847354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new loss-of-function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell.
    Yang K; Jiang M; Le J
    J Integr Plant Biol; 2014 Jun; 56(6):539-49. PubMed ID: 24386951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis.
    Peterson KM; Shyu C; Burr CA; Horst RJ; Kanaoka MM; Omae M; Sato Y; Torii KU
    Development; 2013 May; 140(9):1924-35. PubMed ID: 23515473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stomatal development: new signals and fate determinants.
    Nadeau JA
    Curr Opin Plant Biol; 2009 Feb; 12(1):29-35. PubMed ID: 19042149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SOL1 and SOL2 regulate fate transition and cell divisions in the
    Simmons AR; Davies KA; Wang W; Liu Z; Bergmann DC
    Development; 2019 Feb; 146(3):. PubMed ID: 30665887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development.
    Lau OS; Song Z; Zhou Z; Davies KA; Chang J; Yang X; Wang S; Lucyshyn D; Tay IHZ; Wigge PA; Bergmann DC
    Curr Biol; 2018 Apr; 28(8):1273-1280.e3. PubMed ID: 29628371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis.
    Wang H; Ngwenyama N; Liu Y; Walker JC; Zhang S
    Plant Cell; 2007 Jan; 19(1):63-73. PubMed ID: 17259259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linking cell cycle to stomatal differentiation.
    Han SK; Torii KU
    Curr Opin Plant Biol; 2019 Oct; 51():66-73. PubMed ID: 31075538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stomatal differentiation: the beginning and the end.
    Torii KU
    Curr Opin Plant Biol; 2015 Dec; 28():16-22. PubMed ID: 26344486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.
    de Marcos A; Houbaert A; Triviño M; Delgado D; Martín-Trillo M; Russinova E; Fenoll C; Mena M
    Plant Physiol; 2017 Jun; 174(2):823-842. PubMed ID: 28507175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental validation of the mechanism of stomatal development diversification.
    Doll Y; Koga H; Tsukaya H
    J Exp Bot; 2023 Sep; 74(18):5667-5681. PubMed ID: 37555400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in Arabidopsis thaliana.
    Chen L; Zhao M; Wu Z; Chen S; Rojo E; Luo J; Li P; Zhao L; Chen Y; Deng J; Cheng B; He K; Gou X; Li J; Hou S
    New Phytol; 2021 Apr; 230(1):171-189. PubMed ID: 33058210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel role for STOMATAL CARPENTER 1 in stomata patterning.
    Castorina G; Fox S; Tonelli C; Galbiati M; Conti L
    BMC Plant Biol; 2016 Aug; 16(1):172. PubMed ID: 27484174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling.
    Qi X; Han SK; Dang JH; Garrick JM; Ito M; Hofstetter AK; Torii KU
    Elife; 2017 Mar; 6():. PubMed ID: 28266915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MAP KINASE PHOSPHATASE1 Controls Cell Fate Transition during Stomatal Development.
    Tamnanloo F; Damen H; Jangra R; Lee JS
    Plant Physiol; 2018 Sep; 178(1):247-257. PubMed ID: 30002258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FOUR LIPS plays a role in meristemoid-to-GMC fate transition during stomatal development in Arabidopsis.
    Li P; Chen L; Gu X; Zhao M; Wang W; Hou S
    Plant J; 2023 Apr; 114(2):424-436. PubMed ID: 36786686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arabidopsis guard cell integrity involves the epigenetic stabilization of the FLP and FAMA transcription factor genes.
    Lee E; Lucas JR; Goodrich J; Sack FD
    Plant J; 2014 May; 78(4):566-77. PubMed ID: 24654956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stomatal cell fate commitment via transcriptional and epigenetic control: Timing is crucial.
    Kim ED; Torii KU
    Plant Cell Environ; 2024 Sep; 47(9):3288-3298. PubMed ID: 37996970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development.
    McKown KH; Anleu Gil MX; Mair A; Xu SL; Raissig MT; Bergmann DC
    Plant Cell; 2023 Feb; 35(2):756-775. PubMed ID: 36440974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.