These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37709662)

  • 1. Unlocking Dysprosium Constraints for China's 1.5 °C Climate Target.
    Dai T; Liu YF; Wang P; Qiu Y; Mancheri N; Chen W; Liu JX; Chen WQ; Wang H; Wang AJ
    Environ Sci Technol; 2023 Sep; 57(38):14113-14126. PubMed ID: 37709662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering the Key Features of Dysprosium Flows and Stocks in China.
    Xiao S; Geng Y; Pan H; Gao Z; Yao T
    Environ Sci Technol; 2022 Jun; 56(12):8682-8690. PubMed ID: 35544346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling.
    Rademaker JH; Kleijn R; Yang Y
    Environ Sci Technol; 2013 Sep; 47(18):10129-36. PubMed ID: 23909476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.
    Habib K; Schibye PK; Vestbø AP; Dall O; Wenzel H
    Environ Sci Technol; 2014 Oct; 48(20):12229-37. PubMed ID: 25238428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.
    Alonso E; Sherman AM; Wallington TJ; Everson MP; Field FR; Roth R; Kirchain RE
    Environ Sci Technol; 2012 Mar; 46(6):3406-14. PubMed ID: 22304002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating rare-earth constraints on wind power development under China's carbon-neutral target.
    Hu Z; Yu B; Liu LC; Wei YM
    Sci Total Environ; 2024 Feb; 912():168634. PubMed ID: 37981165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon.
    Rollat A; Guyonnet D; Planchon M; Tuduri J
    Waste Manag; 2016 Mar; 49():427-436. PubMed ID: 26818182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel phosphate functionalized sodium alginate hydrogel for efficient adsorption and separation of Nd and Dy from Co.
    Zhong Y; Ning S; Wu K; Li Z; Wang X; He C; Fujita T; Wang J; Chen L; Yin X; Hamza MF; Wei Y
    J Environ Manage; 2024 Feb; 353():120283. PubMed ID: 38330842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets.
    Pathak AK; Khan M; Gschneidner KA; McCallum RW; Zhou L; Sun K; Dennis KW; Zhou C; Pinkerton FE; Kramer MJ; Pecharsky VK
    Adv Mater; 2015 Apr; 27(16):2663-7. PubMed ID: 25773997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking Three Decades of Global Neodymium Stocks and Flows with a Trade-Linked Multiregional Material Flow Analysis.
    Liu Q; Sun K; Ouyang X; Sen B; Liu L; Dai T; Liu G
    Environ Sci Technol; 2022 Aug; 56(16):11807-11817. PubMed ID: 35920659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of climate goals and clean-air policies on reducing future air pollution deaths in China: a modelling study.
    Liu Y; Tong D; Cheng J; Davis SJ; Yu S; Yarlagadda B; Clarke LE; Brauer M; Cohen AJ; Kan H; Xue T; Zhang Q
    Lancet Planet Health; 2022 Feb; 6(2):e92-e99. PubMed ID: 35150635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring the Use of 8-Hydroxyquinolines for the Facile Separation of Iron, Dysprosium and Neodymium.
    Melegari M; Neri M; Falco A; Tegoni M; Maffini M; Fornari F; Mucchino C; Artizzu F; Serpe A; Marchiò L
    ChemSusChem; 2024 Nov; 17(21):e202400286. PubMed ID: 38786929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid.
    Berger CA; Arkhipova M; Maas G; Jacob T
    Nanoscale; 2016 Aug; 8(29):13997-4003. PubMed ID: 27121463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysprosium-free melt-spun permanent magnets.
    Brown DN; Wu Z; He F; Miller DJ; Herchenroeder JW
    J Phys Condens Matter; 2014 Feb; 26(6):064202. PubMed ID: 24468854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material Flow Analysis of Dysprosium in the United States.
    Chen C; Li N; Qi J; Wei J; Chen WQ
    Environ Sci Technol; 2023 Nov; 57(45):17256-17265. PubMed ID: 37921462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research progress on the content and distribution of rare earth elements in rivers and lakes in China.
    Traore M; He Y; Wang Y; Gong A; Qiu L; Bai Y; Liu Y; Zhang M; Chen Y; Huang X
    Mar Pollut Bull; 2023 Jun; 191():114916. PubMed ID: 37058831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.
    Lixandru A; Venkatesan P; Jönsson C; Poenaru I; Hall B; Yang Y; Walton A; Güth K; Gauß R; Gutfleisch O
    Waste Manag; 2017 Oct; 68():482-489. PubMed ID: 28751173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NdFeB content in ancillary motors of U.S. conventional passenger cars and light trucks: Results from the field.
    Nguyen RT; Imholte DD; Matthews AC; Swank WD
    Waste Manag; 2019 Jan; 83():209-217. PubMed ID: 30459019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical activation induced treatment for the synergistic recovery of valuable elements from spent NdFeB magnets.
    Wu J; Wang D; Zhang Z; Ye C; Wang Z; Hu X
    Waste Manag; 2024 Apr; 178():76-84. PubMed ID: 38382349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.