BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37709734)

  • 1. Local flux coordination and global gene expression regulation in metabolic modeling.
    Li G; Liu L; Du W; Cao H
    Nat Commun; 2023 Sep; 14(1):5700. PubMed ID: 37709734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p.
    Moxley JF; Jewett MC; Antoniewicz MR; Villas-Boas SG; Alper H; Wheeler RT; Tong L; Hinnebusch AG; Ideker T; Nielsen J; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6477-82. PubMed ID: 19346491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for condition-dependent metabolite yield prediction using the TRIMER pipeline.
    Niu P; Soto MJ; Yoon BJ; Dougherty ER; Alexander FJ; Blaby I; Qian X
    STAR Protoc; 2022 Mar; 3(1):101184. PubMed ID: 35243375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prokaryotic regulatory systems biology: Common principles governing the functional architectures of Bacillus subtilis and Escherichia coli unveiled by the natural decomposition approach.
    Freyre-González JA; Treviño-Quintanilla LG; Valtierra-Gutiérrez IA; Gutiérrez-Ríos RM; Alonso-Pavón JA
    J Biotechnol; 2012 Oct; 161(3):278-86. PubMed ID: 22728391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae.
    Boghigian BA; Lee K; Pfeifer BA
    J Theor Biol; 2010 Jan; 262(2):197-207. PubMed ID: 19833139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations.
    Kim J; Reed JL
    Genome Biol; 2012 Jul; 13(9):R78. PubMed ID: 23013597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.
    Kim MK; Lane A; Kelley JJ; Lun DS
    PLoS One; 2016; 11(6):e0157101. PubMed ID: 27327084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis.
    Goelzer A; Bekkal Brikci F; Martin-Verstraete I; Noirot P; Bessières P; Aymerich S; Fromion V
    BMC Syst Biol; 2008 Feb; 2():20. PubMed ID: 18302748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction.
    Fontana J; Voje WE; Zalatan JG; Carothers JM
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):481-490. PubMed ID: 29740742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and Characterization of Broad-Spectrum Promoters for Synthetic Biology.
    Yang S; Liu Q; Zhang Y; Du G; Chen J; Kang Z
    ACS Synth Biol; 2018 Jan; 7(1):287-291. PubMed ID: 29061047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global coordination of metabolic pathways in Escherichia coli by active and passive regulation.
    Kochanowski K; Okano H; Patsalo V; Williamson J; Sauer U; Hwa T
    Mol Syst Biol; 2021 Apr; 17(4):e10064. PubMed ID: 33852189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genome-scale metabolic network models using experimentally measured flux profiles.
    Herrgård MJ; Fong SS; Palsson BØ
    PLoS Comput Biol; 2006 Jul; 2(7):e72. PubMed ID: 16839195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes.
    Bordel S; Agren R; Nielsen J
    PLoS Comput Biol; 2010 Jul; 6(7):e1000859. PubMed ID: 20657658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative evolutionary study of transcription networks. The global role of feedback and hierachical structures.
    Sellerio AL; Bassetti B; Isambert H; Cosentino Lagomarsino M
    Mol Biosyst; 2009 Feb; 5(2):170-9. PubMed ID: 19156263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of transcriptomic constraint-based methods for central carbon flux inference.
    Bhadra-Lobo S; Kim MK; Lun DS
    PLoS One; 2020; 15(9):e0238689. PubMed ID: 32903284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic arrangement of regulons in bacterial genomes.
    Zhang H; Yin Y; Olman V; Xu Y
    PLoS One; 2012; 7(1):e29496. PubMed ID: 22235300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation of gene co-regulation between two prokaryotes: Bacillus subtilis and Escherichia coli.
    Okuda S; Kawashima S; Goto S; Kanehisa M
    Genome Inform; 2005; 16(1):116-24. PubMed ID: 16362913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.