These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37709758)

  • 1. Optimized virtual optical waveguides enhance light throughput in scattering media.
    Pediredla A; Scopelliti MG; Narasimhan S; Chamanzar M; Gkioulekas I
    Nat Commun; 2023 Sep; 14(1):5681. PubMed ID: 37709758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming the tradeoff between confinement and focal distance using virtual ultrasonic optical waveguides.
    Scopelliti MG; Huang H; Pediredla A; Narasimhan SG; Gkioulekas I; Chamanzar M
    Opt Express; 2020 Dec; 28(25):37459-37473. PubMed ID: 33379580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonically sculpted virtual relay lens for in situ microimaging.
    Scopelliti MG; Chamanzar M
    Light Sci Appl; 2019; 8():65. PubMed ID: 31645914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonically Steerable Graded-Index Optical Waveguides for Deep Tissue Light Delivery: Theory and Applications.
    Scopelliti MG; Karimi Y; Chamanzar M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6008-6011. PubMed ID: 31947216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic sculpting of virtual optical waveguides in tissue.
    Chamanzar M; Scopelliti MG; Bloch J; Do N; Huh M; Seo D; Iafrati J; Sohal VS; Alam MR; Maharbiz MM
    Nat Commun; 2019 Jan; 10(1):92. PubMed ID: 30626873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-reversed ultrasonically encoded optical focusing into scattering media.
    Xu X; Liu H; Wang LV
    Nat Photonics; 2011 Mar; 5(3):154. PubMed ID: 21532925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss engineered slow light waveguides.
    O'Faolain L; Schulz SA; Beggs DM; White TP; Spasenović M; Kuipers L; Morichetti F; Melloni A; Mazoyer S; Hugonin JP; Lalanne P; Krauss TF
    Opt Express; 2010 Dec; 18(26):27627-38. PubMed ID: 21197037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors.
    Morimoto Y; Ishigure T
    Opt Express; 2016 Feb; 24(4):3550-61. PubMed ID: 26907012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
    Stott MA; Ganjalizadeh V; Olsen M; Orfila M; McMurray J; Schmidt H; Hawkins AR
    IEEE J Quantum Electron; 2018 Jun; 54(3):. PubMed ID: 29657333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced spectral-domain optical coherence tomography (SD-OCT) using in situ ultrasonic virtual tunable optical waveguides.
    Karimi Y; Yang H; Liu J; Park BH; Chamanzar M
    Opt Express; 2022 Sep; 30(19):34256-34275. PubMed ID: 36242442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths.
    Liu H; Xu X; Lai P; Wang LV
    J Biomed Opt; 2011 Aug; 16(8):086009. PubMed ID: 21895321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of photonic and silver nanowire plasmonic waveguides.
    Pyayt AL; Wiley B; Xia Y; Chen A; Dalton L
    Nat Nanotechnol; 2008 Nov; 3(11):660-5. PubMed ID: 18989331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-density channel alignment of graded index core polymer optical waveguide and its crosstalk analysis with ray tracing method.
    Hsu HH; Ishigure T
    Opt Express; 2010 Jun; 18(13):13368-78. PubMed ID: 20588466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple source generation using air-structured optical waveguides for optical field shaping and transformation within and beyond the waveguide.
    Canning J; Buckley E; Lyytikainen K
    Opt Express; 2003 Feb; 11(4):347-58. PubMed ID: 19461741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of orbital angular momentum and polarization through biological waveguides.
    Perez N; Preece D; Wilson R; Bezryadina A
    Sci Rep; 2022 Aug; 12(1):14144. PubMed ID: 35986206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of optical waveguide scattering loss: an improved method by the use of a Coblentz mirror.
    Wang H
    Appl Opt; 1994 Mar; 33(9):1707-14. PubMed ID: 20885497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snapshot time-reversed ultrasonically encoded optical focusing guided by time-reversed photoacoustic wave.
    Zhang J; Gao Z; Zhang J; Ge P; Gao F; Wang J; Gao F
    Photoacoustics; 2022 Jun; 26():100352. PubMed ID: 35433254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design for polymer optical waveguides realizing efficient light coupling via 45-degree mirrors.
    Morimoto Y; Ishigure T
    Opt Express; 2019 Apr; 27(8):10839-10853. PubMed ID: 31052938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct integration of nanoscale conventional and slot waveguides.
    Ma C; Zhang Q; Van Keuren E
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2524-7. PubMed ID: 21449417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.