BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3770985)

  • 21. Application of the median method to estimate the kinetic constants of the substrate uncompetitive inhibition equation.
    Valencia PL; Astudillo-Castro C; Gajardo D; Flores S
    J Theor Biol; 2017 Apr; 418():122-128. PubMed ID: 28130095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion.
    Sakoda M; Hiromi K
    J Biochem; 1976 Sep; 80(3):547-55. PubMed ID: 977553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of the parameter estimating procedures for the Michaelis-Menten model.
    Tseng SJ; Hsu JP
    J Theor Biol; 1990 Aug; 145(4):457-64. PubMed ID: 2246896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust regression of enzyme kinetic data.
    Cornish-Bowden A; Endrenyi L
    Biochem J; 1986 Feb; 234(1):21-9. PubMed ID: 3707541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer analysis of enzyme-substrate-inhibitor kinetic data with automatic model selection using IBM-PC compatible microcomputers.
    Lutz RA; Bull C; Rodbard D
    Enzyme; 1986; 36(3):197-206. PubMed ID: 3803348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of modified double-reciprocal plot for enzyme kinetic parameters. A pitfall.
    Karanth NG; Srivastava AK
    Biochim Biophys Acta; 1980 Sep; 615(1):279-82. PubMed ID: 7426666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of the F test for determining the degree of enzyme-kinetic and ligand-binding data. A Monte Carlo simulation study.
    Burguillo FJ; Wright AJ; Bardsley WG
    Biochem J; 1983 Apr; 211(1):23-34. PubMed ID: 6870821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A microcomputer method for designing optimal experiments for estimating enzyme kinetic parameters.
    Canela EI
    Int J Biomed Comput; 1985 May; 16(3-4):257-66. PubMed ID: 3839211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and rejection of outliers in enzyme kinetics.
    Lopez-Cabrera A; Cabré F; Franco R; Canela EI
    Int J Biomed Comput; 1988 Oct; 23(1-2):9-20. PubMed ID: 3220600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SigrafW: An easy-to-use program for fitting enzyme kinetic data.
    Leone FA; Baranauskas JA; Furriel RP; Borin IA
    Biochem Mol Biol Educ; 2005 Nov; 33(6):399-403. PubMed ID: 21638609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved rearrangement of the integrated Michaelis-Menten equation for calculating in vivo kinetics of transport and metabolism.
    Russell RW; Drane JW
    J Dairy Sci; 1992 Dec; 75(12):3455-64. PubMed ID: 1474212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Comparison of procedures for determining Michaelis-Menten parameters together with their standard deviations using simulated measurement series].
    Hoppe H; Cumme GA
    Acta Biol Med Ger; 1978; 37(8):1177-84. PubMed ID: 749454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computer program for analyzing enzyme kinetic data using graphical display and statistical analysis.
    Schremmer SD; Waser MR; Kohn MC; Garfinkel D
    Comput Biomed Res; 1984 Jun; 17(3):289-301. PubMed ID: 6547382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ICEKAT: an interactive online tool for calculating initial rates from continuous enzyme kinetic traces.
    Olp MD; Kalous KS; Smith BC
    BMC Bioinformatics; 2020 May; 21(1):186. PubMed ID: 32410570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progress curve analysis in enzyme kinetics: model discrimination and parameter estimation.
    Duggleby RG; Morrison JF
    Biochim Biophys Acta; 1978 Oct; 526(2):398-409. PubMed ID: 718944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental designs for estimating the parameters of the Michaelis-Menten equation from progress curves of enzyme-catalyzed reactions.
    Duggleby RG; Clarke RB
    Biochim Biophys Acta; 1991 Nov; 1080(3):231-6. PubMed ID: 1954231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new procedure to derive weighting factors for nonlinear regression analysis applied to enzyme kinetic data.
    Mannervik B; Jakobson I; Warholm M
    Biochim Biophys Acta; 1979 Mar; 567(1):43-8. PubMed ID: 454628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computer method for the kinetic analysis of enzyme activity.
    Dolara P; Agresti A
    Monogr Neural Sci; 1976; 3():124-8. PubMed ID: 979993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Determination of enzyme kinetic parameters and differentiation between various mechanisms by means of a non-linear least squares method].
    Haerlin R; Steinijans V
    Arzneimittelforschung; 1978; 28(2):292-7. PubMed ID: 580396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation.
    Atkins GL; Nimmo IA
    Biochem J; 1973 Dec; 135(4):779-84. PubMed ID: 4778274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.