These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3770985)

  • 61. Computer program for the expression of the kinetic equations of enzyme reactions as functions of the rate constants and the initial concentrations.
    Varón R; Havsteen BH; García M; García Cánovas F; Tudela J
    Biochem J; 1990 Sep; 270(3):825-8. PubMed ID: 2241914
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Prediction of enzyme kinetic parameters based on statistical learning.
    Borger S; Liebermeister W; Klipp E
    Genome Inform; 2006; 17(1):80-7. PubMed ID: 17503358
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.
    Liao F; Zhu XY; Wang YM; Zuo YP
    J Biochem Biophys Methods; 2005 Jan; 62(1):13-24. PubMed ID: 15656940
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Determination of kinetic parameters of enzyme-catalyzed reactions with a minimum number of velocity measurements.
    Alberty RA
    J Theor Biol; 2008 Sep; 254(1):156-63. PubMed ID: 18582902
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.
    Garrido-del Solo C; García-Cánovas F; Havsteen BH; Varón-Castellanos R
    Biochem J; 1993 Sep; 294 ( Pt 2)(Pt 2):459-64. PubMed ID: 8373361
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Use of nonlinear regression to analyze enzyme kinetic data: application to situations of substrate contamination and background subtraction.
    Leatherbarrow RJ
    Anal Biochem; 1990 Feb; 184(2):274-8. PubMed ID: 2327571
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An EXCEL template for calculation of enzyme kinetic parameters by non-linear regression.
    Hernández A; Ruiz MT
    Bioinformatics; 1998; 14(2):227-8. PubMed ID: 9545460
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Validity of the jack-knife technique for analysing enzyme kinetic data.
    Cornish-Bowden A; Wong JT
    Biochem J; 1980 Feb; 185(2):535-6. PubMed ID: 7396830
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Half-time analysis of the integrated Michaelis equation. Simulation and use of the half-time plot and its direct linear variant in the analysis of some alpha-chymotrypsin, papain- and fumarase-catalysed reactions.
    Wharton CW; Szawelski RJ
    Biochem J; 1982 May; 203(2):351-60. PubMed ID: 7115291
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The computation of hyperbolic dependences in enzyme kinetics.
    Airas RK
    Biochem J; 1976 May; 155(2):449-52. PubMed ID: 938492
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A suitable parameterization of the Michaelis-Menten enzyme reaction.
    Ratkowsky DA
    Biochem J; 1986 Dec; 240(2):357-60. PubMed ID: 3814089
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deviations from Michaelis-Menten kinetics. Computation of the probabilities of obtaining complex curves from simple kinetic schemes.
    Solano-Muñoz F; McGinlay PB; Woolfson R; Bardsley WG
    Biochem J; 1981 Jan; 193(1):339-52. PubMed ID: 7305929
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Computer program for the kinetic equations of enzyme reactions. The case in which more than one enzyme species is present at the onset of the reaction.
    Varón R; Havsteen BH; García M; García-Canóvas F; Tudela J
    Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):91-7. PubMed ID: 1883344
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of two experimental methods for the determination of Michaelis-Menten kinetics of an immobilized enzyme.
    Hooijmans CM; Stoop ML; Boon M; Luyben KC
    Biotechnol Bioeng; 1992 Jun; 40(1):16-24. PubMed ID: 18601039
    [TBL] [Abstract][Full Text] [Related]  

  • 76. GFREG: a computer program for maximum likelihood regression using the Generalized F distribution.
    Hogg SA; Ciampi A
    Comput Methods Programs Biomed; 1985 Jul; 20(2):201-15. PubMed ID: 3848369
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters.
    Eisenthal R; Cornish-Bowden A
    Biochem J; 1974 Jun; 139(3):715-20. PubMed ID: 4854723
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The nature of experimental error in enzyme kinetic measurments.
    Storer AC; Darlison MG; Cornish-Bowden A
    Biochem J; 1975 Nov; 151(2):361-7. PubMed ID: 1218083
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A new linear plot for standard curves in kinetic substrate assays extended above the Michaelis-Menten constant: application to a luminometric assay of glycerol.
    Lundin A; Arner P; Hellmér J
    Anal Biochem; 1989 Feb; 177(1):125-31. PubMed ID: 2742142
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A microcomputer program for fitting two-substrate enzyme rate equations.
    Pinto GF; Oestreicher EG
    Comput Biol Med; 1988; 18(2):135-44. PubMed ID: 3356145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.