These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37709859)

  • 1. Machine learning model for predicting late recurrence of atrial fibrillation after catheter ablation.
    Budzianowski J; Kaczmarek-Majer K; Rzeźniczak J; Słomczyński M; Wichrowski F; Hiczkiewicz D; Musielak B; Grydz Ł; Hiczkiewicz J; Burchardt P
    Sci Rep; 2023 Sep; 13(1):15213. PubMed ID: 37709859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFA-Recur: an ESC EORP AFA-LT registry machine-learning web calculator predicting atrial fibrillation recurrence after ablation.
    Saglietto A; Gaita F; Blomstrom-Lundqvist C; Arbelo E; Dagres N; Brugada J; Maggioni AP; Tavazzi L; Kautzner J; De Ferrari GM; Anselmino M
    Europace; 2023 Feb; 25(1):92-100. PubMed ID: 36006664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explainable machine learning model reveals its decision-making process in identifying patients with paroxysmal atrial fibrillation at high risk for recurrence after catheter ablation.
    Ma Y; Zhang D; Xu J; Pang H; Hu M; Li J; Zhou S; Guo L; Yi F
    BMC Cardiovasc Disord; 2023 Feb; 23(1):91. PubMed ID: 36803424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An effective prediction model based on XGBoost for the 12-month recurrence of AF patients after RFA.
    Sun S; Wang L; Lin J; Sun Y; Ma C
    BMC Cardiovasc Disord; 2023 Nov; 23(1):561. PubMed ID: 37974062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction model of atrial fibrillation recurrence after Cox-Maze IV procedure in patients with chronic valvular disease and atrial fibrillation based on machine learning algorithm.
    Jiang Z; Song L; Liang C; Zhang H; Liu L
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2023 Jul; 48(7):995-1007. PubMed ID: 37724402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-based risk models for procedural complications of radiofrequency ablation for atrial fibrillation.
    Li R; Shen L; Ma W; Li L; Yan B; Wei Y; Wang Y; Pan C; Yuan J
    BMC Med Inform Decis Mak; 2023 Nov; 23(1):257. PubMed ID: 37950179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT.
    Atta-Fosu T; LaBarbera M; Ghose S; Schoenhagen P; Saliba W; Tchou PJ; Lindsay BD; Desai MY; Kwon D; Chung MK; Madabhushi A
    BMC Med Imaging; 2021 Mar; 21(1):45. PubMed ID: 33750343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atrial Fibrillation Complexity Parameters Derived From Surface ECGs Predict Procedural Outcome and Long-Term Follow-Up of Stepwise Catheter Ablation for Atrial Fibrillation.
    Lankveld T; Zeemering S; Scherr D; Kuklik P; Hoffmann BA; Willems S; Pieske B; Haïssaguerre M; Jaïs P; Crijns HJ; Schotten U
    Circ Arrhythm Electrophysiol; 2016 Feb; 9(2):e003354. PubMed ID: 26823480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning-Enabled Multimodal Fusion of Intra-Atrial and Body Surface Signals in Prediction of Atrial Fibrillation Ablation Outcomes.
    Tang S; Razeghi O; Kapoor R; Alhusseini MI; Fazal M; Rogers AJ; Rodrigo Bort M; Clopton P; Wang PJ; Rubin DL; Narayan SM; Baykaner T
    Circ Arrhythm Electrophysiol; 2022 Aug; 15(8):e010850. PubMed ID: 35867397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial Models.
    Roney CH; Sim I; Yu J; Beach M; Mehta A; Alonso Solis-Lemus J; Kotadia I; Whitaker J; Corrado C; Razeghi O; Vigmond E; Narayan SM; O'Neill M; Williams SE; Niederer SA
    Circ Arrhythm Electrophysiol; 2022 Feb; 15(2):e010253. PubMed ID: 35089057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of myocardial injury and inflammation after pulmonary vein isolation for paroxysmal atrial fibrillation between radiofrequency catheter ablation and cryoballoon ablation.
    Yano M; Egami Y; Yanagawa K; Nakamura H; Matsuhiro Y; Yasumoto K; Tsuda M; Okamoto N; Tanaka A; Matsunaga-Lee Y; Yamato M; Shutta R; Nishino M; Tanouchi J
    J Cardiovasc Electrophysiol; 2020 Jun; 31(6):1315-1322. PubMed ID: 32250506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The preablation monocyte/ high density lipoprotein ratio predicts the late recurrence of paroxysmal atrial fibrillation after radiofrequency ablation.
    Chen SA; Zhang MM; Zheng M; Liu F; Sun L; Bao ZY; Chen FK; Li HX; Gu X
    BMC Cardiovasc Disord; 2020 Sep; 20(1):401. PubMed ID: 32894051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the MB-LATER score for prediction of late recurrence after catheter-ablation of atrial fibrillation.
    Potpara TS; Mujovic N; Sivasambu B; Shantsila A; Marinkovic M; Calkins H; Spragg D; Lip GYH
    Int J Cardiol; 2019 Feb; 276():130-135. PubMed ID: 30126656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictors of atrial fibrillation early recurrence following cryoballoon ablation of pulmonary veins using statistical assessment and machine learning algorithms.
    Budzianowski J; Hiczkiewicz J; Burchardt P; Pieszko K; Rzeźniczak J; Budzianowski P; Korybalska K
    Heart Vessels; 2019 Feb; 34(2):352-359. PubMed ID: 30140958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preprocedure Application of Machine Learning and Mechanistic Simulations Predicts Likelihood of Paroxysmal Atrial Fibrillation Recurrence Following Pulmonary Vein Isolation.
    Shade JK; Ali RL; Basile D; Popescu D; Akhtar T; Marine JE; Spragg DD; Calkins H; Trayanova NA
    Circ Arrhythm Electrophysiol; 2020 Jul; 13(7):e008213. PubMed ID: 32536204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fibrillation: impact of pulmonary veins anatomy.
    Khoueiry Z; Albenque JP; Providencia R; Combes S; Combes N; Jourda F; Sousa PA; Cardin C; Pasquie JL; Cung TT; Massin F; Marijon E; Boveda S
    Europace; 2016 Sep; 18(9):1343-51. PubMed ID: 26817755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting favourable outcomes in the setting of radiofrequency catheter ablation of long-standing persistent atrial fibrillation: a pilot study assessing the value of left atrial appendage peak flow velocity.
    Combes S; Jacob S; Combes N; Karam N; Chaumeil A; Guy-Moyat B; Treguer F; Deplagne A; Boveda S; Marijon E; Albenque JP
    Arch Cardiovasc Dis; 2013 Jan; 106(1):36-43. PubMed ID: 23374970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A predictive model using left atrial function and B-type natriuretic peptide level in predicting the recurrence of early persistent atrial fibrillation after radiofrequency ablation.
    Yang Z; Xu M; Zhang C; Liu H; Shao X; Wang Y; Yang L; Yang J
    Clin Cardiol; 2021 Mar; 44(3):407-414. PubMed ID: 33559195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of CHADS2, R2CHADS2, and CHA2DS2-VASc scores for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation: the Leipzig Heart Center AF Ablation Registry.
    Kornej J; Hindricks G; Kosiuk J; Arya A; Sommer P; Husser D; Rolf S; Richter S; Huo Y; Piorkowski C; Bollmann A
    Circ Arrhythm Electrophysiol; 2014 Apr; 7(2):281-7. PubMed ID: 24610790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictors of late recurrence of atrial fibrillation after catheter ablation.
    Cai L; Yin Y; Ling Z; Su L; Liu Z; Wu J; Du H; Lan X; Fan J; Chen W; Xu Y; Zhou P; Zhu J; Zrenner B
    Int J Cardiol; 2013 Mar; 164(1):82-7. PubMed ID: 21737164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.