BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 37710072)

  • 21. Receptor for hyaluronic acid- mediated motility (RHAMM) regulates HT1080 fibrosarcoma cell proliferation via a β-catenin/c-myc signaling axis.
    Kouvidi K; Berdiaki A; Tzardi M; Karousou E; Passi A; Nikitovic D; Tzanakakis GN
    Biochim Biophys Acta; 2016 Apr; 1860(4):814-24. PubMed ID: 26825774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion.
    Kouvidi K; Berdiaki A; Nikitovic D; Katonis P; Afratis N; Hascall VC; Karamanos NK; Tzanakakis GN
    J Biol Chem; 2011 Nov; 286(44):38509-38520. PubMed ID: 21914806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The roles of hyaluronan/RHAMM/CD44 and their respective interactions along the insidious pathways of fibrosarcoma progression.
    Nikitovic D; Kouvidi K; Karamanos NK; Tzanakakis GN
    Biomed Res Int; 2013; 2013():929531. PubMed ID: 24083250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TGF-beta 1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan.
    Samuel SK; Hurta RA; Spearman MA; Wright JA; Turley EA; Greenberg AH
    J Cell Biol; 1993 Nov; 123(3):749-58. PubMed ID: 7693717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ.
    Park D; Kim Y; Kim H; Kim K; Lee YS; Choe J; Hahn JH; Lee H; Jeon J; Choi C; Kim YM; Jeoung D
    Mol Cells; 2012 Jun; 33(6):563-74. PubMed ID: 22610405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyaluronan Receptors as Mediators and Modulators of the Tumor Microenvironment.
    Carvalho AM; Reis RL; Pashkuleva I
    Adv Healthc Mater; 2023 Feb; 12(5):e2202118. PubMed ID: 36373221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities.
    Hinneh JA; Gillis JL; Moore NL; Butler LM; Centenera MM
    Front Oncol; 2022; 12():982231. PubMed ID: 36033439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Matrix Effectors in the Pathogenesis of Keratinocyte-Derived Carcinomas.
    Kavasi RM; Neagu M; Constantin C; Munteanu A; Surcel M; Tsatsakis A; Tzanakakis GN; Nikitovic D
    Front Med (Lausanne); 2022; 9():879500. PubMed ID: 35572966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities.
    Liu J; Xiao Q; Xiao J; Niu C; Li Y; Zhang X; Zhou Z; Shu G; Yin G
    Signal Transduct Target Ther; 2022 Jan; 7(1):3. PubMed ID: 34980884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antitumor effect of 4MU on glioblastoma cells is mediated by senescence induction and CD44, RHAMM and p-ERK modulation.
    Pibuel MA; Poodts D; Díaz M; Molinari YA; Franco PG; Hajos SE; Lompardía SL
    Cell Death Discov; 2021 Oct; 7(1):280. PubMed ID: 34628469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in targeting the WNT/β-catenin signaling pathway in cancer.
    Chatterjee A; Paul S; Bisht B; Bhattacharya S; Sivasubramaniam S; Paul MK
    Drug Discov Today; 2022 Jan; 27(1):82-101. PubMed ID: 34252612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A guide to the composition and functions of the extracellular matrix.
    Karamanos NK; Theocharis AD; Piperigkou Z; Manou D; Passi A; Skandalis SS; Vynios DH; Orian-Rousseau V; Ricard-Blum S; Schmelzer CEH; Duca L; Durbeej M; Afratis NA; Troeberg L; Franchi M; Masola V; Onisto M
    FEBS J; 2021 Dec; 288(24):6850-6912. PubMed ID: 33605520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in the Diagnosis and Management of Neonatal Sarcomas.
    Rashid T; Noyd DH; Iranzad N; Davis JT; Deel MD
    Clin Perinatol; 2021 Mar; 48(1):117-145. PubMed ID: 33583500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of Cyclooxygenase-2 in Human Epithelial Skin Lesions: A Systematic Review of Immunohistochemical Studies.
    Kuźbicki Ł; Brożyna AA
    Appl Immunohistochem Mol Morphol; 2021 Mar; 29(3):163-174. PubMed ID: 32889812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple Forms of Multifunctional Proteins in Health and Disease.
    Espinosa-Cantú A; Cruz-Bonilla E; Noda-Garcia L; DeLuna A
    Front Cell Dev Biol; 2020; 8():451. PubMed ID: 32587857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of hyaluronan and CD44 in cancer and viral infections.
    Heldin P; Kolliopoulos C; Lin CY; Heldin CH
    Cell Signal; 2020 Jan; 65():109427. PubMed ID: 31654718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging roles of ECM remodeling processes in cancer.
    Mohan V; Das A; Sagi I
    Semin Cancer Biol; 2020 May; 62():192-200. PubMed ID: 31518697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Revisiting the hallmarks of cancer: The role of hyaluronan.
    Caon I; Bartolini B; Parnigoni A; Caravà E; Moretto P; Viola M; Karousou E; Vigetti D; Passi A
    Semin Cancer Biol; 2020 May; 62():9-19. PubMed ID: 31319162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of radiosensitivity by 4-methylumbelliferone via the suppression of interleukin-1 in fibrosarcoma cells.
    Saga R; Hasegawa K; Murata K; Chiba M; Nakamura T; Okumura K; Tsuruga E; Hosokawa Y
    Oncol Lett; 2019 Mar; 17(3):3555-3561. PubMed ID: 30867797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MiR-454-3p-Mediated Wnt/β-catenin Signaling Antagonists Suppression Promotes Breast Cancer Metastasis.
    Ren L; Chen H; Song J; Chen X; Lin C; Zhang X; Hou N; Pan J; Zhou Z; Wang L; Huang D; Yang J; Liang Y; Li J; Huang H; Jiang L
    Theranostics; 2019; 9(2):449-465. PubMed ID: 30809286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.