These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37710457)

  • 1. Effect of data spatial vertical resolution on the estimation of vertical profiles of the refractive index structure constant.
    Hu X; Wu X; Yang Q; Guo Y; Wang Z; Yan C; Qiao Z; Qing C; Li X; Qian X
    Opt Express; 2023 Jul; 31(16):25815-25828. PubMed ID: 37710457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation and characterization of atmospheric turbulence in the free atmosphere above the Tibetan Plateau using the Thorpe method.
    Hu X; Wu X; Yang Q; Guo Y; Wang Z; Qing C; Li X; Qian X
    Appl Opt; 2023 Feb; 62(4):1115-1122. PubMed ID: 36821172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable model to estimate the profile of the refractive index structure parameter (C
    Wu S; Wu X; Su C; Yang Q; Xu J; Luo T; Huang C; Qing C
    Opt Express; 2021 Apr; 29(8):12454-12470. PubMed ID: 33985004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of turbulence parameters in the atmospheric boundary layer of the Bohai Sea, China, by coherent Doppler lidar and mesoscale model.
    Jin X; Song X; Yang Y; Wang M; Shao S; Zheng H
    Opt Express; 2022 Apr; 30(8):13263-13277. PubMed ID: 35472943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoscale optical turbulence simulations above Tibetan Plateau: first attempt.
    Qing C; Wu X; Li X; Luo T; Su C; Zhu W
    Opt Express; 2020 Feb; 28(4):4571-4586. PubMed ID: 32121691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation and characterization of the refractive index structure constant within the marine atmospheric boundary layer.
    Zhang H; Zhu L; Sun G; Zhang K; Xu M; Liu N; Chen D; Wu Y; Cui S; Luo T; Li X; Weng N
    Appl Opt; 2022 Nov; 61(33):9762-9772. PubMed ID: 36606804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulence strength
    Saha RK; Salcin E; Kim J; Smith J; Jayasuriya S
    Opt Express; 2022 Oct; 30(22):40854-40870. PubMed ID: 36299011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forecasting the atmospheric refractive index structure constant profile with an altitude-time correlations-inspired deep learning model.
    Hou M; Gong S; Li X; Xiao D; Zuo Y; Liu Y
    Opt Express; 2023 Jan; 31(2):2426-2444. PubMed ID: 36785257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PML: a generalized monitor of atmospheric turbulence profile with high vertical resolution.
    Chabé J; Aristidi E; Ziad A; Lantéri H; Fanteï-Caujolle Y; Giordano C; Borgnino J; Marjani M; Renaud C
    Appl Opt; 2020 Sep; 59(25):7574-7584. PubMed ID: 32902457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New $\text{C}_{n}^{2}$ statistical model based on first radiosonde turbulence observation over Lhasa.
    Han Y; Wu X; Luo T; Qing C; Yang Q; Jin X; Liu N; Wu S; Su C
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jun; 37(6):995-1001. PubMed ID: 32543601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of
    Beason M; Potvin G; Sprung D; McCrae J; Gladysz S
    Appl Opt; 2024 Jun; 63(16):E94-E106. PubMed ID: 38856596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring the turbulence profile in the lower atmospheric boundary layer.
    van Iersel M; Paulson DA; Wu C; Ferlic NA; Rzasa JR; Davis CC; Walker M; Bowden M; Spychalsky J; Titus F
    Appl Opt; 2019 Sep; 58(25):6934-6941. PubMed ID: 31503665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple approach for estimating the refractive index structure parameter (Cn²) profile in the atmosphere.
    Basu S
    Opt Lett; 2015 Sep; 40(17):4130-3. PubMed ID: 26368729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensing refractive-turbulence profiles (C(n)(2)) using wave front phase measurements from multiple reference sources.
    Welsh BM
    Appl Opt; 1992 Dec; 31(34):7283-91. PubMed ID: 20802595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractive turbulence profiling using stellar scintillation and radar wind profiles.
    Churnside JH; Clifford SF
    Appl Opt; 1988 Dec; 27(23):4884-90. PubMed ID: 20539670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-altitude vertical wind profile estimation using multirotor vehicles.
    McConville A; Richardson T
    Front Robot AI; 2023; 10():1112889. PubMed ID: 36936410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wind and refractive-turbulence sensing using crossed laser beams.
    Wang TI; Clifford SF; Ochs GR
    Appl Opt; 1974 Nov; 13(11):2602-8. PubMed ID: 20134740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of refractive index structure parameter estimation for certain infrared bands.
    Sivaslıgil M; Erol CB; Polat ÖM; Sarı H
    Appl Opt; 2013 May; 52(14):3127-33. PubMed ID: 23669824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive turbulence profiling using synthetic aperture spatial filtering of scintillation.
    Clifford SF; Churnside JH
    Appl Opt; 1987 Apr; 26(7):1295-303. PubMed ID: 20454318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabry-Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35  km altitude.
    Shen F; Xie C; Qiu C; Wang B
    Appl Opt; 2018 Nov; 57(31):9328-9340. PubMed ID: 30461973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.