BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37710458)

  • 1. High-sensitivity non-cooled near-infrared detector based on lithium niobate surface acoustic wave resonators combined with MXene Ti
    Feng L; Liu G; Guo P; Jiang Y; Ma X; Chen Y; Luo J
    Opt Express; 2023 Jul; 31(16):25829-25839. PubMed ID: 37710458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of MXene Ti
    Feng L; Luo J; Ma X; Cui J; Chen Y; Lu J; Zhang L; Pei Z
    Opt Express; 2022 Sep; 30(19):34129-34139. PubMed ID: 36242433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film.
    Nomura T; Takebayashi R; Saitoh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1261-5. PubMed ID: 18244288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of a Solid-State Tuning Behavior in Lithium Niobate.
    Branch DW; Jensen DS; Nordquist CD; Siddiqui A; Douglas JK; Eichenfield M; Friedmann TA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):365-373. PubMed ID: 31567077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A passive wireless surface acoustic wave (SAW) sensor system for detecting warfare agents based on fluoroalcohol polysiloxane film.
    Pan Y; Yan C; Gao X; Yang J; Guo T; Zhang L; Wang W
    Microsyst Nanoeng; 2024; 10():4. PubMed ID: 38179439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO
    Liu Y; Liu K; Li J; Li Y; Wu T
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithic Strong Coupling of Topological Surface Acoustic Wave Resonators on Lithium Niobate.
    Zhang ZD; Yu SY; Xu H; Lu MH; Chen YF
    Adv Mater; 2024 May; 36(21):e2312861. PubMed ID: 38340067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal leaky SAW resonators and filters on YZ-LiNbO3.
    Makkonen T; Plessky VP; Steichen W; Grigorievski VI; Solal M; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Feb; 53(2):393-401. PubMed ID: 16529114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Structural Parameters on Performance of SAW Resonators Based on 128° YX LiNbO
    Geng W; Zhao C; Xue F; Qiao X; He J; Xue G; Liu Y; Wei H; Bi K; Mei L; Chou X
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrications of L-band LiNbO
    Hu B; Zhang S; Zhang H; Lv W; Zhang C; Lv X; San H
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31141949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Characterization of Surface Acoustic Wave-Based Wireless and Passive Temperature Sensing System.
    Zhou Z; Wang H; Lou L
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform.
    Ahmed ANR; Shi S; Mercante AJ; Prather DW
    Opt Express; 2019 Oct; 27(21):30741-30751. PubMed ID: 31684317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Surface Acoustic Wave Propagation Characteristics in New Multilayer Structure: SiO
    Zhang H; Wang H
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating photorefractive effect in thin-film lithium niobate microring resonators.
    Xu Y; Shen M; Lu J; Surya JB; Sayem AA; Tang HX
    Opt Express; 2021 Feb; 29(4):5497-5504. PubMed ID: 33726085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near Spurious-Free Thickness Shear Mode Lithium Niobate Resonator for Piezoelectric Power Conversion.
    Nguyen K; Chulukhadze V; Stolt E; Braun W; Segovia-Fernandez J; Chakraborty S; Rivas J; Lu R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Nov; 70(11):1536-1543. PubMed ID: 37549088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Analysis of Lithium-Niobate-Based Laterally Excited Bulk Acoustic Wave Resonator with Pentagon Spiral Electrodes.
    Xie Y; Liu W; Cai Y; Wen Z; Luo T; Liu Y; Sun C
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air.
    Eisner SR; Chapin CA; Lu R; Yang Y; Gong S; Senesky DG
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection.
    Xu FQ; Wang W; Xue XF; Hu HL; Liu XL; Pan Y
    Sensors (Basel); 2015 Dec; 15(12):30187-98. PubMed ID: 26633419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-optically tunable microring resonators on lithium niobate.
    Wang TJ; Chu CH; Lin CY
    Opt Lett; 2007 Oct; 32(19):2777-9. PubMed ID: 17909570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium Niobate MEMS Antisymmetric Lamb Wave Resonators with Support Structures.
    Zhang Y; Jiang Y; Tang C; Deng C; Du F; He J; Hu Q; Wang Q; Yu H; Wang Z
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.