These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37710490)

  • 1. Two-mode squeezing over deployed fiber coexisting with conventional communications.
    Chapman JC; Miloshevsky A; Lu HH; Rao N; Alshowkan M; Peters NA
    Opt Express; 2023 Jul; 31(16):26254-26275. PubMed ID: 37710490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of imperfect homodyne visibility on multi-spatial-mode two-mode squeezing measurements.
    Gupta P; Speirs RW; Jones KM; Lett PD
    Opt Express; 2020 Jan; 28(1):652-664. PubMed ID: 32118988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing two-mode-squeezed light from four-wave mixing in rubidium vapor for quantum sensing and information processing.
    de Araujo LEE; Zhou Z; DiMario M; Anderson BE; Zhao J; Jones KM; Lett PD
    Opt Express; 2024 Jan; 32(2):1305-1313. PubMed ID: 38297685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of two-mode squeezed and entangled light in a single temporal and spatial mode.
    Wasilewski W; Fernholz T; Jensen K; Madsen LS; Krauter H; Muschik C; Polzik ES
    Opt Express; 2009 Aug; 17(16):14444-57. PubMed ID: 19654852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of Squeezed Light in the 2  μm Region.
    Mansell GL; McRae TG; Altin PA; Yap MJ; Ward RL; Slagmolen BJJ; Shaddock DA; McClelland DE
    Phys Rev Lett; 2018 May; 120(20):203603. PubMed ID: 29864323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a compact fibered squeezing parametric source.
    Brieussel A; Ott K; Joos M; Treps N; Fabre C
    Opt Lett; 2018 Mar; 43(6):1267-1270. PubMed ID: 29543268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully guided and phase locked Ti:PPLN waveguide squeezing for applications in quantum sensing.
    Domeneguetti R; Stefszky M; Herrmann H; Silberhorn C; Andersen UL; Neergaard-Nielsen JS; Gehring T
    Opt Lett; 2023 Jun; 48(11):2999-3002. PubMed ID: 37262265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of quadrature squeezing in a chi2 nonlinear waveguide using a temporally shaped local oscillator pulse.
    Eto Y; Tajima T; Zhang Y; Hirano T
    Opt Express; 2008 Jul; 16(14):10650-6657. PubMed ID: 18607479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-mode squeezing in arbitrary spatial modes.
    Semmler M; Berg-Johansen S; Chille V; Gabriel C; Banzer P; Aiello A; Marquardt C; Leuchs G
    Opt Express; 2016 Apr; 24(7):7633-42. PubMed ID: 27137050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 12.6 dB squeezed light at 1550 nm from a bow-tie cavity for long-term high duty cycle operation.
    Shajilal B; Thearle O; Tranter A; Lu Y; Huntington E; Assad S; Lam PK; Janousek J
    Opt Express; 2022 Oct; 30(21):37213-37223. PubMed ID: 36258313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity.
    Ast S; Mehmet M; Schnabel R
    Opt Express; 2013 Jun; 21(11):13572-9. PubMed ID: 23736610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of Two-Mode Squeezed States in Atomic Mechanical Oscillators.
    Leong WS; Xin M; Chen Z; Wang Y; Lan SY
    Phys Rev Lett; 2023 Nov; 131(19):193601. PubMed ID: 38000417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-broadband quadrature squeezing with thin-film lithium niobate nanophotonics.
    Chen PK; Briggs I; Hou S; Fan L
    Opt Lett; 2022 Mar; 47(6):1506-1509. PubMed ID: 35290350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator.
    Serikawa T; Yoshikawa JI; Makino K; Frusawa A
    Opt Express; 2016 Dec; 24(25):28383-28391. PubMed ID: 27958548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum frequency conversion of vacuum squeezed light to bright tunable blue squeezed light and higher-order spatial modes.
    Kerdoncuff H; Christensen JB; Lassen M
    Opt Express; 2021 Sep; 29(19):29828-29840. PubMed ID: 34614720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-fidelity heralded quantum squeezing gate based on entanglement.
    Liu K; Li J; Yang R; Zhai S
    Opt Express; 2020 Aug; 28(16):23628-23639. PubMed ID: 32752356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of multi-mode squeezed vacuum using pulse pumped fiber optical parametric amplifiers.
    Liu N; Liu Y; Li J; Yang L; Li X
    Opt Express; 2016 Feb; 24(3):2125-33. PubMed ID: 26906788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 10 dB Quantum-Enhanced Michelson Interferometer with Balanced Homodyne Detection.
    Heinze J; Danzmann K; Willke B; Vahlbruch H
    Phys Rev Lett; 2022 Jul; 129(3):031101. PubMed ID: 35905370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of continuous variable orbital angular momentum squeezing and entanglement by pump shaping.
    Li Z; Guo X; Sun H; Liu K; Gao J
    Opt Express; 2023 Jan; 31(3):3651-3659. PubMed ID: 36785352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A squeezed quantum microcomb on a chip.
    Yang Z; Jahanbozorgi M; Jeong D; Sun S; Pfister O; Lee H; Yi X
    Nat Commun; 2021 Aug; 12(1):4781. PubMed ID: 34362920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.