These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37710490)

  • 21. Observation of Two-Mode Squeezing in a Traveling Wave Parametric Amplifier.
    Esposito M; Ranadive A; Planat L; Leger S; Fraudet D; Jouanny V; Buisson O; Guichard W; Naud C; Aumentado J; Lecocq F; Roch N
    Phys Rev Lett; 2022 Apr; 128(15):153603. PubMed ID: 35499875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Few-mode squeezing in type-I parametric downconversion by complete group velocity matching.
    Horoshko DB; Kolobov MI; Parigi V; Treps N
    Opt Lett; 2024 Aug; 49(15):4078-4081. PubMed ID: 39090864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.
    Ast S; Samblowski A; Mehmet M; Steinlechner S; Eberle T; Schnabel R
    Opt Lett; 2012 Jun; 37(12):2367-9. PubMed ID: 22739910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-mode squeezed-light generation and tomography with an integrated optical parametric oscillator.
    Park T; Stokowski H; Ansari V; Gyger S; Multani KKS; Celik OT; Hwang AY; Dean DJ; Mayor F; McKenna TP; Fejer MM; Safavi-Naeini A
    Sci Adv; 2024 Mar; 10(11):eadl1814. PubMed ID: 38478618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distillation of squeezing using an engineered pulsed parametric down-conversion source.
    Dirmeier T; Tiedau J; Khan I; Ansari V; Müller CR; Silberhorn C; Marquardt C; Leuchs G
    Opt Express; 2020 Oct; 28(21):30784-30796. PubMed ID: 33115072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cavity enhanced parametric homodyne detection of a squeezed quantum comb.
    Tian Y; Sun X; Wang Y; Li Q; Tian L; Zheng Y
    Opt Lett; 2022 Feb; 47(3):533-536. PubMed ID: 35103674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remote and controlled quantum teleportation network of the polarization squeezed state.
    Yan J; Zhou X; Yan Z; Jia X
    Opt Express; 2024 Jun; 32(12):21977-21987. PubMed ID: 38859538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structured light analogy of quantum squeezed states.
    Wang Z; Zhan Z; Vetlugin AN; Ou JY; Liu Q; Shen Y; Fu X
    Light Sci Appl; 2024 Oct; 13(1):297. PubMed ID: 39428404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device.
    Vaidya VD; Morrison B; Helt LG; Shahrokshahi R; Mahler DH; Collins MJ; Tan K; Lavoie J; Repingon A; Menotti M; Quesada N; Pooser RC; Lita AE; Gerrits T; Nam SW; Vernon Z
    Sci Adv; 2020 Sep; 6(39):. PubMed ID: 32967824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Programmable time-multiplexed squeezed light source.
    Tomoda H; Yoshida T; Kashiwazaki T; Umeki T; Enomoto Y; Takeda S
    Opt Express; 2023 Jan; 31(2):2161-2176. PubMed ID: 36785236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-Degenerate Quadrature-Squeezed Vacuum Generation on a Silicon-Nitride Chip.
    Zhao Y; Okawachi Y; Jang JK; Ji X; Lipson M; Gaeta AL
    Phys Rev Lett; 2020 May; 124(19):193601. PubMed ID: 32469562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polarization squeezing at the audio frequency band for the Rubidium D
    Wen X; Han Y; Liu J; He J; Wang J
    Opt Express; 2017 Aug; 25(17):20737-20748. PubMed ID: 29041752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Squeezing and over-squeezing of triphotons.
    Shalm LK; Adamson RB; Steinberg AM
    Nature; 2009 Jan; 457(7225):67-70. PubMed ID: 19122637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Squeezed-light generation with a mode-locked Q-switched laser and detection by using a matched local oscillator.
    Aytür O; Kumar P
    Opt Lett; 1992 Apr; 17(7):529-31. PubMed ID: 19794548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-distance distribution of the telecom band intensity difference squeezing generated in a fiber optical parametric amplifier.
    Liu Y; Huo N; Li J; Li X
    Opt Lett; 2018 Nov; 43(22):5559-5562. PubMed ID: 30439895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Squeezed vacuum phase control at 2  μm.
    Yap MJ; Gould DW; McRae TG; Altin PA; Kijbunchoo N; Mansell GL; Ward RL; Shaddock DA; Slagmolen BJJ; McClelland DE
    Opt Lett; 2019 Nov; 44(21):5386-5389. PubMed ID: 31675014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated photonic platform for quantum information with continuous variables.
    Lenzini F; Janousek J; Thearle O; Villa M; Haylock B; Kasture S; Cui L; Phan HP; Dao DV; Yonezawa H; Lam PK; Huntington EH; Lobino M
    Sci Adv; 2018 Dec; 4(12):eaat9331. PubMed ID: 30539143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of
    Kim S; Marino AM
    Opt Express; 2018 Dec; 26(25):33366-33375. PubMed ID: 30645489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compact, low-threshold squeezed light source.
    Arnbak J; Jacobsen CS; Andrade RB; Guo X; Neergaard-Nielsen JS; Andersen UL; Gehring T
    Opt Express; 2019 Dec; 27(26):37877-37885. PubMed ID: 31878561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation.
    Huang W; Liang X; Zhu B; Yan Y; Yuan CH; Zhang W; Chen LQ
    Phys Rev Lett; 2023 Feb; 130(7):073601. PubMed ID: 36867793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.