These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37710624)

  • 21. Verification method of Monte Carlo codes for transport processes with arbitrary accuracy.
    Martelli F; Tommasi F; Sassaroli A; Fini L; Cavalieri S
    Sci Rep; 2021 Sep; 11(1):19486. PubMed ID: 34593837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive stochastic Gauss-Newton method with optical Monte Carlo for quantitative photoacoustic tomography.
    Hänninen N; Pulkkinen A; Arridge S; Tarvainen T
    J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35396833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphics processing unit-accelerated mesh-based Monte Carlo photon transport simulations.
    Fang Q; Yan S
    J Biomed Opt; 2019 Nov; 24(11):1-6. PubMed ID: 31746154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light transport modeling in highly complex tissues using the implicit mesh-based Monte Carlo algorithm.
    Yuan Y; Yan S; Fang Q
    Biomed Opt Express; 2021 Jan; 12(1):147-161. PubMed ID: 33520382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Confocal microscopy in turbid media.
    Schmitt JM; Knüttel A; Yadlowsky M
    J Opt Soc Am A Opt Image Sci Vis; 1994 Aug; 11(8):2226-35. PubMed ID: 7931759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient computation of the steady-state and time-domain solutions of the photon diffusion equation in layered turbid media.
    Helton M; Zerafa S; Vishwanath K; Mycek MA
    Sci Rep; 2022 Nov; 12(1):18979. PubMed ID: 36347893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution of the direct problem in turbid media with inclusions using Monte Carlo simulations implemented in graphics processing units: new criterion for processing transmittance data.
    Carbone N; Di Rocco H; Iriarte DI; Pomarico JA
    J Biomed Opt; 2010; 15(3):035002. PubMed ID: 20615002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.
    Bartzsch S; Oelfke U
    Med Phys; 2013 Nov; 40(11):111714. PubMed ID: 24320422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency domain photon migration in the delta- P1 approximation: analysis of ballistic, transport, and diffuse regimes.
    You JS; Hayakawa CK; Venugopalan V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021903. PubMed ID: 16196600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of voxel size and photon number in voxel-based Monte Carlo method: criteria and applications.
    Li D; Chen B; Ran WY; Wang GX; Wu WJ
    J Biomed Opt; 2015; 20(9):095014. PubMed ID: 26417866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.
    Vishwanath K; Pogue B; Mycek MA
    Phys Med Biol; 2002 Sep; 47(18):3387-405. PubMed ID: 12375827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of the Monte Carlo code for modeling of photon migration in tissue.
    Zołek NS; Liebert A; Maniewski R
    Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study.
    Zonios G; Dimou A
    Biomed Opt Express; 2011 Dec; 2(12):3284-94. PubMed ID: 22162819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid mesh and voxel based Monte Carlo algorithm for accurate and efficient photon transport modeling in complex bio-tissues.
    Yan S; Fang Q
    Biomed Opt Express; 2020 Nov; 11(11):6262-6270. PubMed ID: 33282488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An indeterministic Monte Carlo technique for fast time of flight photon transport through optically thick turbid media.
    Behin-Ain S; van Doorn T; Patterson JR
    Med Phys; 2002 Feb; 29(2):125-31. PubMed ID: 11865984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accelerated GPU based SPECT Monte Carlo simulations.
    Garcia MP; Bert J; Benoit D; Bardiès M; Visvikis D
    Phys Med Biol; 2016 Jun; 61(11):4001-18. PubMed ID: 27163656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Markov chain solution of photon multiple scattering through turbid slabs.
    Lin Y; Northrop WF; Li X
    Opt Express; 2016 Nov; 24(23):26942-26947. PubMed ID: 27857421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations.
    Sempau J; Wilderman SJ; Bielajew AF
    Phys Med Biol; 2000 Aug; 45(8):2263-91. PubMed ID: 10958194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.
    Lee MW; Hung CH; Liao JL; Cheng NY; Hou MF; Tseng SH
    Biomed Opt Express; 2014 Oct; 5(10):3628-39. PubMed ID: 25360378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms.
    Yu L; Nina-Paravecino F; Kaeli D; Fang Q
    J Biomed Opt; 2018 Jan; 23(1):1-4. PubMed ID: 29374404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.