These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37710641)

  • 1. Crosstalk-free for multi-plane holographic display using double-constraint stochastic gradient descent.
    Wang J; Wang J; Zhou J; Zhang Y; Wu Y
    Opt Express; 2023 Sep; 31(19):31142-31157. PubMed ID: 37710641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing crosstalk of a multi-plane holographic display by the time-multiplexing stochastic gradient descent.
    Wang Z; Chen T; Chen Q; Tu K; Feng Q; Lv G; Wang A; Ming H
    Opt Express; 2023 Feb; 31(5):7413-7424. PubMed ID: 36859872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructed quality improvement with a stochastic gradient descent optimization algorithm for a spherical hologram.
    Pan Y; Wang J; Wu Y; Peng H; Yang H; Chen C
    Appl Opt; 2022 Jun; 61(17):5341-5349. PubMed ID: 36256220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function.
    Chen C; Lee B; Li NN; Chae M; Wang D; Wang QH; Lee B
    Opt Express; 2021 May; 29(10):15089-15103. PubMed ID: 33985216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction.
    Quan J; Yan B; Sang X; Zhong C; Li H; Qin X; Xiao R; Sun Z; Dong Y; Zhang H
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnification and quality improvement for an optical cylindrical holographic display.
    Wang J; Guo Z; Wu Y
    Appl Opt; 2022 Dec; 61(35):10478-10483. PubMed ID: 36607109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High quality holographic 3D display with enhanced focus cues based on multiple directional light reconstruction.
    Wang Z; Liang L; Chen T; Lv G; Feng Q; Wang A; Ming H
    Opt Lett; 2024 Mar; 49(6):1548-1551. PubMed ID: 38489447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speckle-free compact holographic near-eye display using camera-in-the-loop optimization with phase constraint.
    Chen L; Zhu R; Zhang H
    Opt Express; 2022 Dec; 30(26):46649-46665. PubMed ID: 36558612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-illumination 3D holographic display using a binary mask.
    Jo Y; Yoo D; Lee D; Kim M; Lee B
    Opt Lett; 2022 May; 47(10):2482-2485. PubMed ID: 35561381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth-Enhanced Holographic Super Multi-View Maxwellian Display Based on Variable Filter Aperture.
    Tu K; Chen Q; Wang Z; Lv G; Feng Q
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time 3D imaging of ocean algae with crosstalk suppressed single-shot digital holographic microscopy.
    Tang M; He H; Yu L
    Biomed Opt Express; 2022 Aug; 13(8):4455-4467. PubMed ID: 36032587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision transformer empowered physics-driven deep learning for omnidirectional three-dimensional holography.
    Jin Z; Ren Q; Chen T; Dai Z; Shu F; Fang B; Hong Z; Shen C; Mei S
    Opt Express; 2024 Apr; 32(8):14394-14404. PubMed ID: 38859385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm.
    Chang C; Xia J; Yang L; Lei W; Yang Z; Chen J
    Appl Opt; 2015 Aug; 54(23):6994-7001. PubMed ID: 26368366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-plane artifact suppression in tomosynthesis using 3D CT image data.
    Kim JG; Jin SO; Cho MH; Lee SY
    Biomed Eng Online; 2011 Dec; 10():106. PubMed ID: 22151538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locally linear transform based three-dimensional gradient
    Wang Q; Wu W; Deng S; Zhu Y; Yu H
    Med Phys; 2020 Oct; 47(10):4810-4826. PubMed ID: 32740956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosstalk Suppressed 3D Light Field Display Based on an Optimized Holographic Function Screen.
    Zhang H; Yu X; Gao X; Zhong C; Chen Y; Sang X; Wang K
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speckleless holographic display by complex modulation based on double-phase method.
    Qi Y; Chang C; Xia J
    Opt Express; 2016 Dec; 24(26):30368-30378. PubMed ID: 28059313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized phase-only hologram generation for high-quality holographic display.
    Zuo J; Leng J; Fu Y
    Appl Opt; 2022 Dec; 61(35):10519-10527. PubMed ID: 36607114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensated DOE in a VHG-based waveguide display to improve uniformity.
    Guo M; Guo Y; Cai J; Wang Z; Lv G; Feng Q
    Opt Express; 2024 May; 32(10):18017-18032. PubMed ID: 38858968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Sharp Estimate on the Transient Time of Distributed Stochastic Gradient Descent.
    Pu S; Olshevsky A; Paschalidis IC
    IEEE Trans Automat Contr; 2022 Nov; 67(11):5900-5915. PubMed ID: 37284602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.