BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37710692)

  • 1. Optical bistability in a heterodimer composed of a quantum dot and a metallic nanoshell.
    Zhao WH; He MD; Long LW; Peng YX; Xiao S; Li JB; Chen LQ
    Opt Express; 2023 Aug; 31(18):28805-28815. PubMed ID: 37710692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator.
    Li JB; Liang S; Xiao S; He MD; Kim NC; Chen LQ; Wu GH; Peng YX; Luo XY; Guo ZP
    Opt Express; 2016 Feb; 24(3):2360-9. PubMed ID: 26906811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistable four-wave mixing response in a semiconductor quantum dot coupled to a photonic crystal nanocavity.
    Li JB; Xiao S; Liang S; He MD; Luo JH; Kim NC; Chen LQ
    Opt Express; 2017 Oct; 25(21):25663-25673. PubMed ID: 29041231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS
    Li JB; Tan XL; Ma JH; Xu SQ; Kuang ZW; Liang S; Xiao S; He MD; Kim NC; Luo JH; Chen LQ
    Nanotechnology; 2018 Jun; 29(25):255704. PubMed ID: 29620534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems.
    Li JB; Kim NC; Cheng MT; Zhou L; Hao ZH; Wang QQ
    Opt Express; 2012 Jan; 20(2):1856-61. PubMed ID: 22274530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bistable optical response of a nanoparticle heterodimer: mechanism, phase diagram, and switching time.
    Nugroho BS; Iskandar AA; Malyshev VA; Knoester J
    J Chem Phys; 2013 Jul; 139(1):014303. PubMed ID: 23822299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of two-photon florescence in metallic nanoshells.
    Singh MR; Persaud PD; Yastrebov S
    Nanotechnology; 2020 Apr; 31(26):265203. PubMed ID: 32197263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical bistability in core-shell magnetoplasmonic nanoparticles with magnetocontrollability.
    Yu WJ; Sun H; Gao L
    Opt Express; 2016 Sep; 24(19):22272-81. PubMed ID: 27661961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical bistability in a nonlinear-shell-coated metallic nanoparticle.
    Chen H; Zhang Y; Zhang B; Gao L
    Sci Rep; 2016 Feb; 6():21741. PubMed ID: 26907967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-strong optical four-wave mixing signal induced by strong exciton-phonon and exciton-plasmon couplings.
    Guo QQ; Liang S; Gong B; Li JB; Xiao S; He MD; Chen LQ
    Opt Express; 2022 Feb; 30(5):6630-6639. PubMed ID: 35299444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability.
    Artuso RD; Bryant GW
    Nano Lett; 2008 Jul; 8(7):2106-11. PubMed ID: 18558787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.
    Sadeghi SM
    Opt Lett; 2014 Sep; 39(17):4986-9. PubMed ID: 25166055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
    He Y; Zhu KD
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dot-metallic nanorod sensors via exciton-plasmon interaction.
    Hatef A; Sadeghi SM; Boulais É; Meunier M
    Nanotechnology; 2013 Jan; 24(1):015502. PubMed ID: 23220909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terahertz Optical Bistability in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems.
    Tohari MM
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33143277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-threshold laser medium utilizing semiconductor nanoshell quantum dots.
    Porotnikov D; Diroll BT; Harankahage D; Obloy L; Yang M; Cassidy J; Ellison C; Miller E; Rogers S; Tarnovsky AN; Schaller RD; Zamkov M
    Nanoscale; 2020 Sep; 12(33):17426-17436. PubMed ID: 32797122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-channel bistable switch based on a monolayer graphene nanoribbon nanoresonator coupled to a metal nanoparticle.
    Xiao XJ; Tan Y; Guo QQ; Li JB; Liang S; Xiao S; Zhong HH; He MD; Liu LH; Luo JH; Chen LQ
    Opt Express; 2020 Feb; 28(3):3136-3146. PubMed ID: 32121987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.
    Zhou N; Yuan M; Gao Y; Li D; Yang D
    ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide.
    Kim NC; Ko MC; Choe SI; Hao ZH; Zhou L; Li JB; Im SJ; Ko YH; Jo CG; Wang QQ
    Nanotechnology; 2016 Nov; 27(46):465703. PubMed ID: 27749280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system.
    Schindel D; Singh MR
    J Phys Condens Matter; 2015 Sep; 27(34):345301. PubMed ID: 26252228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.