These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37710696)

  • 1. Beam wander prediction with recurrent neural networks.
    Briantcev D; Cox MA; Trichili A; Ooi BS; Alouini MS
    Opt Express; 2023 Aug; 31(18):28859-28873. PubMed ID: 37710696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of reducing beam wander by modulating the coherence structure of structured light beams.
    Yu J; Zhu X; Wang F; Wei D; Gbur G; Cai Y
    Opt Lett; 2019 Sep; 44(17):4371-4374. PubMed ID: 31465405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams.
    Yuan Y; Lei T; Li Z; Li Y; Gao S; Xie Z; Yuan X
    Sci Rep; 2017 Feb; 7():42276. PubMed ID: 28186198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wander and spread of a perfect Laguerre-Gauss beam under turbulent absorbent seawater.
    Yang H; Zhang Y; Zhao G; Yu L; Hu L
    Appl Opt; 2022 May; 61(15):4549-4557. PubMed ID: 36256297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications.
    Yura HT; Fields RA
    Appl Opt; 2011 Jun; 50(18):2875-85. PubMed ID: 21691350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wander of the short-term spreading filter for partially coherent Gaussian beams through the anisotropic turbulent ocean.
    Yang Y; Yu L; Wang Q; Zhang Y
    Appl Opt; 2017 Sep; 56(25):7046-7052. PubMed ID: 29048003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence.
    Ren Y; Dang A; Liu L; Guo H
    Appl Opt; 2012 Oct; 51(30):7246-54. PubMed ID: 23089778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beam wander of partially coherent array beams through non-Kolmogorov turbulence.
    Huang Y; Zeng A; Gao Z; Zhang B
    Opt Lett; 2015 Apr; 40(8):1619-22. PubMed ID: 25872031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Airy Gaussian vortex beam array on reducing intermode crosstalk induced by atmospheric turbulence.
    Yue P; Hu J; Yi X; Xu D; Liu Y
    Opt Express; 2019 Dec; 27(26):37986-37998. PubMed ID: 31878570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Beam Divergence Control to Mitigate Scintillation Effect Caused by Pointing Error in Vertical FSO Transmissions.
    Park HM; Hyun YJ; Han SK
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slant-path coherent free space optical communications over the maritime and terrestrial atmospheres with the use of adaptive optics for beam wavefront correction.
    Li M; Gao W; Cvijetic M
    Appl Opt; 2017 Jan; 56(2):284-297. PubMed ID: 28085865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beam wander of electromagnetic Gaussian-Schell model beams propagating in atmospheric turbulence.
    Yu S; Chen Z; Wang T; Wu G; Guo H; Gu W
    Appl Opt; 2012 Nov; 51(31):7581-5. PubMed ID: 23128706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turbulence heterodyne coherent mitigation of orbital angular momentum multiplexing in a free space optical link by auxiliary light.
    Yang C; Xu C; Ni W; Gan Y; Hou J; Chen S
    Opt Express; 2017 Oct; 25(21):25612-25624. PubMed ID: 29041226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Analysis of Relay-Aided Hybrid FSO/RF Cooperation Communication System over the Generalized Turbulence Channels with Pointing Errors and Nakagami-m Fading Channels.
    Wu Y; Li G; Kong D
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental mitigation of the effects of the limited size aperture or misalignment by singular-value-decomposition-based beam orthogonalization in a free-space optical link using Laguerre-Gaussian modes.
    Pang K; Song H; Su X; Zou K; Zhao Z; Song H; Almaiman A; Zhang R; Liu C; Hu N; Zach S; Cohen N; Lynn B; Molisch AF; Boyd RW; Tur M; Willner AE
    Opt Lett; 2020 Nov; 45(22):6310-6313. PubMed ID: 33186977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beam-wander analysis in turbulent ocean with the effect of the eddy diffusivity ratio and the outer scale.
    Yue P; Luan X; Yi X; Cui Z; Wu M
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):556-562. PubMed ID: 31044975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of using two aperture pairs combined with multiple-mode receivers and MIMO signal processing for enhanced tolerance to turbulence and misalignment in a 10  Gbit/s QPSK FSO link.
    Song H; Li L; Pang K; Zhang R; Zou K; Zhao Z; Du J; Song H; Liu C; Cao Y; Willner AN; Almaiman A; Bock R; Lynn B; Tur M; Willner AE
    Opt Lett; 2020 Jun; 45(11):3042-3045. PubMed ID: 32479454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam.
    Liu X; Wang F; Wei C; Cai Y
    Opt Lett; 2014 Jun; 39(11):3336-9. PubMed ID: 24876047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the motion of chest internal points using a recurrent neural network trained with real-time recurrent learning for latency compensation in lung cancer radiotherapy.
    Pohl M; Uesaka M; Demachi K; Bhusal Chhatkuli R
    Comput Med Imaging Graph; 2021 Jul; 91():101941. PubMed ID: 34265553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode detection of misaligned orbital angular momentum beams based on convolutional neural network.
    Zhao Q; Hao S; Wang Y; Wang L; Wan X; Xu C
    Appl Opt; 2018 Dec; 57(35):10152-10158. PubMed ID: 30645219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.