These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37710727)

  • 1. Super low-frequency electric field measurement based on Rydberg atoms.
    Li L; Jiao Y; Hu J; Li H; Shi M; Zhao J; Jia S
    Opt Express; 2023 Aug; 31(18):29228-29234. PubMed ID: 37710727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field Distortion and Optimization of a Vapor Cell in Rydberg Atom-Based Radio-Frequency Electric Field Measurement.
    Song Z; Zhang W; Wu Q; Mu H; Liu X; Zhang L; Qu J
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30248986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rydberg atom-based AM receiver with a weak continuous frequency carrier.
    Li H; Hu J; Bai J; Shi M; Jiao Y; Zhao J; Jia S
    Opt Express; 2022 Apr; 30(8):13522-13529. PubMed ID: 35472962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the Rydberg EIT spectrum in a thermal vapor.
    Su HJ; Liou JY; Lin IC; Chen YH
    Opt Express; 2022 Jan; 30(2):1499-1510. PubMed ID: 35209308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency stabilization method for transition to a Rydberg state using Zeeman modulation.
    Jia F; Zhang J; Zhang L; Wang F; Mei J; Yu Y; Zhong Z; Xie F
    Appl Opt; 2020 Mar; 59(7):2108-2113. PubMed ID: 32225735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersive microwave electrometry using Zeeman frequency modulation spectroscopy of electromagnetically induced transparency in Rydberg atoms.
    Jia F; Yu Y; Liu X; Zhang X; Zhang L; Wang F; Mei J; Zhang J; Xie F; Zhong Z
    Appl Opt; 2020 Sep; 59(27):8253-8258. PubMed ID: 32976410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DC electric fields in electrode-free glass vapor cell by photoillumination.
    Ma L; Paradis E; Raithel G
    Opt Express; 2020 Feb; 28(3):3676-3685. PubMed ID: 32122031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field.
    Yao J; An Q; Zhou Y; Yang K; Wu F; Fu Y
    Opt Lett; 2022 Oct; 47(20):5256-5259. PubMed ID: 36240336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced microwave metrology using an optical grating in Rydberg atoms.
    Zhao S; Yin Z; Song X; Jia Z; Wang L; Chen B; Zeng Q; Peng Y
    Appl Opt; 2023 May; 62(14):3747-3752. PubMed ID: 37706992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion Imaging via Long-Range Interaction with Rydberg Atoms.
    Gross C; Vogt T; Li W
    Phys Rev Lett; 2020 Feb; 124(5):053401. PubMed ID: 32083920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave Electrometry with Multi-Photon Coherence in Rydberg Atoms.
    Yin Z; Li Q; Song X; Jia Z; Parniak M; Lu X; Peng Y
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency.
    Zhao J; Zhu X; Zhang L; Feng Z; Li C; Jia S
    Opt Express; 2009 Aug; 17(18):15821-6. PubMed ID: 19724582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atom-based sensing technique of microwave electric and magnetic fields via a single rubidium vapor cell.
    Feng Z; Liu X; Zhang Y; Ruan W; Song Z; Qu J
    Opt Express; 2023 Jan; 31(2):1692-1704. PubMed ID: 36785199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells.
    Fan HQ; Kumar S; Daschner R; Kübler H; Shaffer JP
    Opt Lett; 2014 May; 39(10):3030-3. PubMed ID: 24978265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier.
    Song Z; Liu H; Liu X; Zhang W; Zou H; Zhang J; Qu J
    Opt Express; 2019 Mar; 27(6):8848-8857. PubMed ID: 31052696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced spectral profile in the study of Doppler-broadened Rydberg ensembles.
    Wu BH; Chuang YW; Chen YH; Yu JC; Chang MS; Yu IA
    Sci Rep; 2017 Aug; 7(1):9726. PubMed ID: 28852012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinction of electromagnetically induced transparency and Autler-Towners splitting in a Rydberg-involved ladder-type cold atom system.
    Ji Z; Jiao Y; Xue Y; Hao L; Zhao J; Jia S
    Opt Express; 2021 Apr; 29(8):11406-11415. PubMed ID: 33984920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of Goos-Hänchen shift due to a Rydberg state.
    Asadpour SH; Hamedi HR; Jafari M
    Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of Interactions between Trapped Ions and Ultracold Rydberg Atoms.
    Ewald NV; Feldker T; Hirzler H; Fürst HA; Gerritsma R
    Phys Rev Lett; 2019 Jun; 122(25):253401. PubMed ID: 31347879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-induced fluorescence-dip spectroscopy of Rydberg states of xenon for electric field measurement in plasma.
    An W; Wang Z; Weisenburger A; Mueller G
    Rev Sci Instrum; 2022 Feb; 93(2):023503. PubMed ID: 35232132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.