These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37710764)

  • 1. Polycrystalline silicon 2 × 2 Mach-Zehnder interferometer optical switch.
    Xu X; Yin Y; Sun C; Li J; Lin H; Tang B; Zhang P; Li L; Zhang D
    Opt Express; 2023 Aug; 31(18):29695-29702. PubMed ID: 37710764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-power-efficient 2 × 2 Si Mach-Zehnder interferometer optical switch based on III-V/Si hybrid MOS phase shifter.
    Li Q; Han JH; Ho CP; Takagi S; Takenaka M
    Opt Express; 2018 Dec; 26(26):35003-35012. PubMed ID: 30650915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units.
    Qiao L; Tang W; Chu T
    Sci Rep; 2017 Feb; 7():42306. PubMed ID: 28181557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance silicon photonic tri-state switch based on balanced nested Mach-Zehnder interferometer.
    Lu Z; Celo D; Mehrvar H; Bernier E; Chrostowski L
    Sci Rep; 2017 Sep; 7(1):12244. PubMed ID: 28947823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch.
    Liu K; Zhang C; Mu S; Wang S; Sorger VJ
    Opt Express; 2016 Jul; 24(14):15845-53. PubMed ID: 27410854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh extinction ratio and a low power silicon thermo-optic switch.
    Wang J; Shi S; Niu H; Gao S; Yang B; Zhang S; Cheng W; Chen Y; Guo C; Zhu W; Hu G; Cui Y; Yun B
    Opt Lett; 2024 May; 49(10):2705-2708. PubMed ID: 38748141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-transfer printing InP C-band SOAs on advanced silicon photonics platform for lossless MZI switch fabrics and high-speed integrated transmitters.
    Zhang J; Bogaert L; Krückel C; Soltanian E; Deng H; Haq B; Rimböck J; Van Kerrebrouck J; Lepage G; Verheyen P; Van Campenhout J; Ossieur P; Van Thourhout D; Morthier G; Bogaerts W; Roelkens G
    Opt Express; 2023 Dec; 31(26):42807-42821. PubMed ID: 38178391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3×10 Gb/s silicon three-mode switch with 120° hybrid based unbalanced Mach-Zehnder interferometer.
    Priti RB; Zhang G; Liboiron-Ladouceur O
    Opt Express; 2019 May; 27(10):14199-14212. PubMed ID: 31163872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip quasi-digital optical switch using silicon microring resonator-coupled Mach-Zehnder interferometer.
    Song J; Luo X; Tu X; Jia L; Fang Q; Liow TY; Yu M; Lo GQ
    Opt Express; 2013 May; 21(10):12767-75. PubMed ID: 23736494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon Thermo-Optic Switches with Graphene Heaters Operating at Mid-Infrared Waveband.
    Zhong C; Zhang Z; Ma H; Wei M; Ye Y; Wu J; Tang B; Zhang P; Liu R; Li J; Li L; Hu X; Liu K; Lin H
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers.
    Lu L; Zhou L; Li X; Chen J
    Opt Lett; 2014 Mar; 39(6):1633-6. PubMed ID: 24690856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralow crosstalk nanosecond-scale nested 2 × 2 Mach-Zehnder silicon photonic switch.
    Dupuis N; Rylyakov AV; Schow CL; Kuchta DM; Baks CW; Orcutt JS; Gill DM; Green WM; Lee BG
    Opt Lett; 2016 Jul; 41(13):3002-5. PubMed ID: 27367086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient mode exchanger-based silicon photonic switch enabled by inverse design.
    Zhang G; Xu DX; Grinberg Y; Liboiron-Ladouceur O
    Opt Express; 2022 Jun; 30(12):20543-20553. PubMed ID: 36224796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-power all-optical switch based on a graphene-buried polymer waveguide Mach-Zehnder interferometer.
    Jiang L; Huang Q; Chiang KS
    Opt Express; 2022 Feb; 30(5):6786-6797. PubMed ID: 35299457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 650-nm 1 × 2 polymeric thermo-optic switch with low power consumption.
    Wang XB; Sun J; Liu YF; Sun JW; Chen CM; Sun XQ; Wang F; Zhang DM
    Opt Express; 2014 May; 22(9):11119-28. PubMed ID: 24921810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon photonic broadband polarization-insensitive switch based on polarization-mode diversity conversion.
    Li W; Xu L; Wei Z; Zhang J; Mao D; D'Mello Y; Plant DV
    Opt Lett; 2023 Sep; 48(17):4661-4664. PubMed ID: 37656580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip.
    Jia H; Zhou T; Zhang L; Ding J; Fu X; Yang L
    Opt Express; 2017 Aug; 25(17):20698-20707. PubMed ID: 29041748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-power-consumption polymer Mach-Zehnder interferometer thermo-optic switch at 532  nm based on a triangular waveguide.
    Lin B; Wang X; Lv J; Cao Y; Yang Y; Zhang Y; Zhang A; Yi Y; Wang F; Zhang D
    Opt Lett; 2020 Aug; 45(16):4448-4451. PubMed ID: 32796980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s.
    Kim G; Park JW; Kim IG; Kim S; Kim S; Lee JM; Park GS; Joo J; Jang KS; Oh JH; Kim SA; Kim JH; Lee JY; Park JM; Kim DW; Jeong DK; Hwang MS; Kim JK; Park KS; Chi HK; Kim HC; Kim DW; Cho MH
    Opt Express; 2011 Dec; 19(27):26936-47. PubMed ID: 22274277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides.
    Shoji Y; Kintaka K; Suda S; Kawashima H; Hasama T; Ishikawa H
    Opt Express; 2010 Apr; 18(9):9071-5. PubMed ID: 20588754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.