These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37710773)

  • 21. Temporal-spatial binary encoding method based on dynamic threshold optimization for 3D shape measurement.
    Zhou P; Feng X; Luo J; Zhu J
    Opt Express; 2023 Jul; 31(14):23274-23293. PubMed ID: 37475416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-speed three-dimensional shape measurement based on tripartite complementary Gray-coded light.
    Li D; Chen J; Tang T; Shi X; Tang Z; Liu Y
    Appl Opt; 2022 Jun; 61(17):5083-5089. PubMed ID: 36256195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-overlapping structured-light projection: high performance on 3D shape measurement for complex dynamic scenes.
    Wu Z; Guo W; Zhang Q; Wang H; Li X; Chen Z
    Opt Express; 2022 Jun; 30(13):22467-22486. PubMed ID: 36224944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High dynamic range 3D shape measurement based on crosstalk characteristics of a color camera.
    Wang Z; Li K; Gao N; Meng Z; Zhang Z
    Opt Express; 2023 Nov; 31(23):38318-38333. PubMed ID: 38017940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time 3D shape measurement of dynamic scenes using fringe projection profilometry: lightweight NAS-optimized dual frequency deep learning approach.
    Li Y; Wu Z; Shen J; Zhang Q
    Opt Express; 2023 Nov; 31(24):40803-40823. PubMed ID: 38041372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High dynamic range 3D measurement based on spectral modulation and hyperspectral imaging.
    Wang Y; Zhang J; Luo B
    Opt Express; 2018 Dec; 26(26):34442-34450. PubMed ID: 30650867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improve Temporal Fourier Transform Profilometry for Complex Dynamic Three-Dimensional Shape Measurement.
    Liu Y; Zhang Q; Zhang H; Wu Z; Chen W
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase-shifting profilometry combined with Gray-code patterns projection: unwrapping error removal by an adaptive median filter.
    Zheng D; Da F; Kemao Q; Seah HS
    Opt Express; 2017 Mar; 25(5):4700-4713. PubMed ID: 28380741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection.
    Zhang M; Chen Q; Tao T; Feng S; Hu Y; Li H; Zuo C
    Opt Express; 2017 Aug; 25(17):20381-20400. PubMed ID: 29041720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High dynamic range 3D shape measurement based on the intensity response function of a camera.
    Zhang L; Chen Q; Zuo C; Feng S
    Appl Opt; 2018 Feb; 57(6):1378-1386. PubMed ID: 29469839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase Error Reduction for a Structured-Light 3D System Based on a Texture-Modulated Reprojection Method.
    Shi C; Qin Z; Hu X; Zhu C; Mo Y; Li Z; Yan S; Yu Y; Zang X; Zhang C
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fringe projection profilometry method with high efficiency, precision, and convenience: theoretical analysis and development.
    Lv S; Tang D; Zhang X; Yang D; Deng W; Kemao Q
    Opt Express; 2022 Sep; 30(19):33515-33537. PubMed ID: 36242386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-shot 3D measurement of highly reflective objects with deep learning.
    Wan M; Kong L
    Opt Express; 2023 Apr; 31(9):14965-14985. PubMed ID: 37157349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry.
    Qian J; Feng S; Li Y; Tao T; Han J; Chen Q; Zuo C
    Opt Lett; 2020 Apr; 45(7):1842-1845. PubMed ID: 32236013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the measurement precision of Fringe Projection Profilometry.
    Lv S; Kemao Q
    Light Sci Appl; 2023 Oct; 12(1):257. PubMed ID: 37899479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fringe projection profilometry by conducting deep learning from its digital twin.
    Zheng Y; Wang S; Li Q; Li B
    Opt Express; 2020 Nov; 28(24):36568-36583. PubMed ID: 33379748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High dynamic range 3D measurement based on polarization and multispectrum co-modulation.
    Huang H; Li F; Zuo C; Wang Y
    Opt Express; 2023 Dec; 31(25):41582-41594. PubMed ID: 38087553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Depth-driven variable-frequency sinusoidal fringe pattern for accuracy improvement in fringe projection profilometry.
    Rao G; Song L; Zhang S; Yang X; Chen K; Xu J
    Opt Express; 2018 Aug; 26(16):19986-20008. PubMed ID: 30119317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Learning-Based 3D Measurements with Near-Infrared Fringe Projection.
    Wang J; Li Y; Ji Y; Qian J; Che Y; Zuo C; Chen Q; Feng S
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Point-Wise Phase Estimation Method in Fringe Projection Profilometry under Non-Sinusoidal Distortion.
    Yin Z; Liu C; Zhang C; He X; Yang F
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.