These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37710845)

  • 1. Optical printed circuit boards with multimode polymer waveguides and pluggable connectors for high-speed optical interconnects.
    Shi Y; Liu X; Ma L; Immonen M; Zhu L; He Z
    Opt Express; 2023 Aug; 31(17):27776-27786. PubMed ID: 37710845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm.
    Xu X; Ma L; Jiang S; He Z
    Opt Express; 2017 Oct; 25(21):25689-25696. PubMed ID: 29041233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed performance evaluation of ultra-flexible polymer waveguides supporting meter-scale optical interconnects.
    Shi Y; Ma L; Kaneta M; Xu B; Fan X; Zhuang Y; He Z
    Opt Express; 2022 Jul; 30(15):27236-27248. PubMed ID: 36236898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Display glass for low-loss and high-density optical interconnects in electro-optical circuit boards with eight optical layers.
    Brusberg L; Whalley S; Herbst C; Schröder H
    Opt Express; 2015 Dec; 23(25):32528-40. PubMed ID: 26699042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler.
    Lin X; Hosseini A; Dou X; Subbaraman H; Chen RT
    Opt Express; 2013 Jan; 21(1):60-9. PubMed ID: 23388896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directly inscribed multimode polymer waveguide and 3D device for high-speed and high-density optical interconnects.
    Xu X; Ma L; Shi Y; Ishigure T; He Z
    Opt Express; 2019 Aug; 27(16):22419-22428. PubMed ID: 31510536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental assessment of SU-8 optical waveguides buried in plastic substrate for optical interconnections.
    Hamid HH; Fickenscher T; Thiel DV
    Appl Opt; 2015 Aug; 54(22):6623-31. PubMed ID: 26368073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct ink writing 3D-printed optical waveguides for multi-layer interconnect.
    Lin C; Jia X; Chen C; Yang C; Li X; Shao M; Yu Y; Zhang Z
    Opt Express; 2023 Mar; 31(7):11913-11922. PubMed ID: 37155815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispensed polymer waveguides and laser-fabricated couplers for optical interconnects on printed circuit boards.
    Leng Y; Yun V; Lucas L; Herman WN; Goldhar J
    Appl Opt; 2007 Feb; 46(4):602-10. PubMed ID: 17230255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics and crosstalk of optical waveguides fabricated in polymethyl methacrylate polymer circuit board.
    Hamid HH; Rüter CE; Thiel DV; Fickenscher T
    Appl Opt; 2016 Nov; 55(32):9017-9021. PubMed ID: 27857284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on mode dispersion and lamination stability of multimode polymer waveguides for an optical backplane.
    Xu X; Liu X; Immonen M; Ma L; He Z
    Opt Express; 2022 Oct; 30(22):40505-40514. PubMed ID: 36298982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and transmission of optical polymer waveguide backplane for high - performance computers.
    Yang S; Yang L; Li B; Luo F; Wang X; Du Y
    Opt Express; 2020 May; 28(10):14605-14617. PubMed ID: 32403498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 45 degree polymer micromirror integration for board-level three-dimensional optical interconnects.
    Wang F; Liu F; Adibi A
    Opt Express; 2009 Jun; 17(13):10514-21. PubMed ID: 19550447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Heat Dissipation of Uncooled 400-Gbps (16×25-Gbps) Optical Transceiver Employing Multimode VCSEL and PD Arrays.
    Shih TT; Chi YC; Wang RN; Wu CH; Huang JJ; Jou JJ; Lee TC; Kuo HC; Lin GR; Cheng WH
    Sci Rep; 2017 Apr; 7():46608. PubMed ID: 28417978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer waveguides for electro-optical integration in data centers and high-performance computers.
    Dangel R; Hofrichter J; Horst F; Jubin D; La Porta A; Meier N; Soganci IM; Weiss J; Offrein BJ
    Opt Express; 2015 Feb; 23(4):4736-50. PubMed ID: 25836510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 90°-bent graded-index core polymer waveguide for a high-bandwidth-density VCSEL-based optical engine.
    Kohmu N; Ishii M; Hatai R; Ishigure T
    Opt Express; 2022 Jan; 30(3):4351-4364. PubMed ID: 35209673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct bandwidth measurement of multimode waveguides based on an optical sampling technique.
    Shi Y; Xu B; Ma L; Xiong J; Fan X; Zhuang Y; He Z
    Opt Lett; 2021 Oct; 46(19):4908-4911. PubMed ID: 34598231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of optoelectronic circuit boards produced by two-photon polymerization using a polysiloxane containing acrylate functional groups.
    Woods R; Feldbacher S; Zidar D; Langer G; Satzinger V; Schmid G; Leeb W; Kern W
    Appl Opt; 2013 Jan; 52(3):388-93. PubMed ID: 23338184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Polymer Waveguides Fabricated by Roll-to-Plate Nanoimprinting Technique.
    Prajzler V; Chlupaty V; Kulha P; Neruda M; Kopp S; Mühlberger M
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33805712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography.
    Khan MU; Justice J; Petäjä J; Korhonen T; Boersma A; Wiegersma S; Karppinen M; Corbett B
    Opt Express; 2015 Jun; 23(11):14630-9. PubMed ID: 26072823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.