These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37710876)

  • 1. Accurate measurement and adjustment method for interference fringe direction in a scanning beam interference lithography system.
    Li Y; Jiang S; Chen X; Liu Z; Wang W; Song Y; Bayanheshig
    Opt Express; 2023 Aug; 31(17):28145-28160. PubMed ID: 37710876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterodyne period measurement in a scanning beam interference lithography system.
    Jiang S; Lü B; Song Y; Liu Z; Wang W; Shuo L; Bayanheshig
    Appl Opt; 2020 Jul; 59(19):5830-5836. PubMed ID: 32609710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scan angle error measurement based on phase-stepping algorithms in scanning beam interference lithography.
    Li M; Xiang X; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(10):2641-2649. PubMed ID: 31045064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of ultra-high aspect ratio silicon grating using an alignment method based on a scanning beam interference lithography system.
    Chen X; Jiang S; Li Y; Jiang Y; Wang W; Bayanheshig
    Opt Express; 2022 Oct; 30(22):40842-40853. PubMed ID: 36299010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision fringe period metrology using an LSQ sine fit algorithm.
    Xiang X; Li M; Wei C; Zhou C
    Appl Opt; 2018 Jun; 57(17):4777-4784. PubMed ID: 30118093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beam drift error and control technology for scanning beam interference lithography.
    Wang W; Song Y; Jiang S; Pan M; Bayanheshig
    Appl Opt; 2017 May; 56(14):4138-4145. PubMed ID: 29047546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomography of dark-field scatter including single-exposure Moiré fringe analysis with X-ray biprism interferometry-A simulation study.
    Tao W; Sung Y; Kim SJW; Huang Q; Gullberg GT; Seo Y; Fuller M
    Med Phys; 2021 Oct; 48(10):6293-6311. PubMed ID: 34407202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision measurement of X-axis stage mirror profile in scanning beam interference lithography by three-probe system based on bidirectional integration model.
    Liu Z; Jiang S; Li X; Song Y; Li W; Bayanheshig
    Opt Express; 2017 May; 25(9):10312-10321. PubMed ID: 28468404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-range in situ picometer measurement of the period of an interference field.
    Xiang X; Jia W; Xiang C; Li M; Bu F; Zhu S; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(11):2929-2935. PubMed ID: 31044895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for exposure dose monitoring and control in scanning beam interference lithography.
    Song Y; Liu Y; Jiang S; Zhu Y; Zhang L; Liu Z
    Appl Opt; 2021 Apr; 60(10):2767-2774. PubMed ID: 33798150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Sensors for Multi-Axis Angle and Displacement Measurement Using Grating Reflectors.
    Shimizu Y; Matsukuma H; Gao W
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interference sensor for ultra-precision measurement of laser beam angular deflection.
    Dobosz M
    Rev Sci Instrum; 2018 Nov; 89(11):115003. PubMed ID: 30501332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sample phase gradient and fringe phase shift in triple phase grating X-ray interferometry.
    Yan A; Wu X; Liu H
    OSA Contin; 2020 Oct; 3(10):2782-2796. PubMed ID: 34263146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment.
    Ma D; Zhao Y; Zeng L
    Sci Rep; 2017 Apr; 7(1):926. PubMed ID: 28424475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed scanning stroboscopic fringe-pattern projection technology for three-dimensional shape precision measurement.
    Yang G; Sun C; Wang P; Xu Y
    Appl Opt; 2014 Jan; 53(2):174-83. PubMed ID: 24514046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterning nanoscale crossed grating with high uniformity by using two-axis Lloyd's mirrors based interference lithography.
    Xue G; Lu H; Li X; Zhou Q; Wu G; Wang X; Zhai Q; Ni K
    Opt Express; 2020 Jan; 28(2):2179-2191. PubMed ID: 32121913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active control technology of a diffraction grating wavefront by scanning beam interference lithography.
    Liu Z; Yang H; Li Y; Jiang S; Wang W; Song Y; Bayanheshig ; Li W
    Opt Express; 2021 Nov; 29(23):37066-37074. PubMed ID: 34808785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tilt sensitivity of the two-grating interferometer.
    Anderson CN; Naulleau PP
    Appl Opt; 2008 Mar; 47(9):1327-35. PubMed ID: 18709081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General mathematical model for the period chirp in interference lithography.
    Bienert F; Graf T; Ahmed MA
    Opt Express; 2023 Feb; 31(4):5334-5346. PubMed ID: 36823816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Theory and correction of interference fringe in static fourier transform spectrometer].
    Lin L; Ren Z; Li G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2067-72. PubMed ID: 19093562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.