These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37710896)

  • 1. Opto-microfluidic coupling between optical waveguides and tilted microchannels in lithium niobate.
    Zamboni R; Gauthier-Manuel L; Zaltron A; Lucchetti L; Chauvet M; Sada C
    Opt Express; 2023 Aug; 31(17):28423-28436. PubMed ID: 37710896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opto-Microfluidic System for Absorbance Measurements in Lithium Niobate Device Applied to pH Measurements.
    Zamboni R; Zaltron A; Izzo E; Bottaro G; Ferraro D; Sada C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channel Waveguides in Lithium Niobate and Lithium Tantalate.
    Lu Y; Johnston B; Dekker P; Withford MJ; Dawes JM
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32867367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon.
    Dumais P; Callender CL; Ledderhof CJ; Noad JP
    Appl Opt; 2006 Dec; 45(36):9182-90. PubMed ID: 17151758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic Waveguides in Teflon AF-Coated PDMS Microfluidic Channels.
    Cho SH; Godin J; Lo YH
    IEEE Photonics Technol Lett; 2009 Aug; 21(15):1057-1059. PubMed ID: 20729984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic platform using liquid crystals in lithium niobate microchannel.
    Bonfadini S; Ciciulla F; Criante L; Zaltron A; Simoni F; Reshetnyak V; Lucchetti L
    Sci Rep; 2019 Jan; 9(1):1062. PubMed ID: 30705302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically generated optical waveguide in a lithium-niobate thin film.
    Chen Q; Zhu Y; Wu D; Li T; Li Z; Lu C; Chiang KS; Zhang X
    Opt Express; 2020 Sep; 28(20):29895-29903. PubMed ID: 33114878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and Analysis of an Opto-Fluidic Sensor for Lab-on-a-Chip Applications.
    Muniswamy V; Bangalore Muniraju C; Kumar Pattnaik P; Krishnaswamy N
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled switching of discrete solitons in periodically poled lithium niobate waveguide arrays.
    Chen H; Lv T; Zheng A; Han Y
    Appl Opt; 2013 Mar; 52(8):1663-7. PubMed ID: 23478770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of Photon Emitters in Monolayer WS
    Liu XJ; Yu Y; Liu D; Cui QL; Qi X; Chen Y; Qu G; Song L; Guo GP; Guo GC; Sun X; Ren XF
    Nano Lett; 2023 Apr; 23(8):3209-3216. PubMed ID: 37040479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform.
    Fan SK; Lee HP; Chien CC; Lu YW; Chiu Y; Lin FY
    Lab Chip; 2016 Mar; 16(5):847-54. PubMed ID: 26841828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waveguides in single-crystal lithium niobate thin film by proton exchange.
    Cai L; Han SL; Hu H
    Opt Express; 2015 Jan; 23(2):1240-8. PubMed ID: 25835882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel.
    Maselli V; Grenier JR; Ho S; Herman PR
    Opt Express; 2009 Jul; 17(14):11719-29. PubMed ID: 19582086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film.
    Cai L; Kang Y; Hu H
    Opt Express; 2016 Mar; 24(5):4640-4647. PubMed ID: 29092292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opto-Microfluidic Integration of the Bradford Protein Assay in Lithium Niobate Lab-on-a-Chip.
    Zanini L; Zaltron A; Turato E; Zamboni R; Sada C
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range.
    Wu X; Zhou C; Huang WR; Ahr F; Kärtner FX
    Opt Express; 2015 Nov; 23(23):29729-37. PubMed ID: 26698455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Characterisation of a Whole Hybrid Sol-Gel Optofluidic Platform for Biosensing Applications.
    MacHugh E; Antony G; Mallik AK; Kaworek A; McCormack D; Duffy B; Oubaha M
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optofluidic waveguides for reconfigurable photonic systems.
    Chung AJ; Erickson D
    Opt Express; 2011 Apr; 19(9):8602-9. PubMed ID: 21643111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.