BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37710978)

  • 1. CuO Promotes the Formation of Halogenated Disinfection Byproducts during Chlorination via an Enhanced Oxidation Pathway.
    Liu Y; Liu H; Croue JP; Liu C
    Environ Sci Technol; 2023 Nov; 57(47):19043-19053. PubMed ID: 37710978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Bromate and Halogenated Disinfection Byproducts during Chlorination of Bromide-Containing Waters in the Presence of Dissolved Organic Matter and CuO.
    Liu C; Croué JP
    Environ Sci Technol; 2016 Jan; 50(1):135-44. PubMed ID: 26630351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide.
    Liu Y; Liu K; Plewa MJ; Karanfil T; Liu C
    J Environ Sci (China); 2022 Jul; 117():151-160. PubMed ID: 35725067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative formation of chlorinated and brominated disinfection byproducts from chlorination and bromination of amino acids.
    Li G; Tian C; Karanfil T; Liu C
    Chemosphere; 2024 Feb; 349():140985. PubMed ID: 38104740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins.
    Liu C; Ersan MS; Wagner E; Plewa MJ; Amy G; Karanfil T
    Water Res; 2020 Oct; 184():116145. PubMed ID: 32771689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected weakened formation of disinfection byproducts and enhanced production of halates by cupric oxide during chlorination of peptide-bound aspartic acid.
    Zhao G; Qiao M; Cheng H; Xu D; Liu X; Hu J; Qiang Z; Wu D; Chen Q
    J Hazard Mater; 2024 Aug; 474():134766. PubMed ID: 38833955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination.
    Zhou K; Ye S; Yu Q; Chen J; Yong P; Ma X; Li Q; Dietrich AM
    Sci Total Environ; 2021 Jun; 771():144885. PubMed ID: 33736131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae.
    Liu C; Ersan MS; Plewa MJ; Amy G; Karanfil T
    Water Res; 2018 Oct; 142():313-324. PubMed ID: 29890479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper ion affects oxidant decay and combined aspartic acid transformation during chlorination in water pipes: Differentiated action on the yield of trihalomethanes and haloacetonitriles.
    Hu J; Chen Q; Liu F; Qiang Z; Yu J
    Water Res; 2024 Mar; 251():121153. PubMed ID: 38246080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of bromate by zero valent iron (ZVI) enhances formation of brominated disinfection by-products during chlorination.
    Wu Z; Tang Y; Yuan X; Qiang Z
    Chemosphere; 2021 Apr; 268():129340. PubMed ID: 33360939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of metal oxides on oxidant decay and disinfection byproduct formation in drinking waters: Relevance to distribution systems.
    Liu C
    J Environ Sci (China); 2021 Dec; 110():140-149. PubMed ID: 34593185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa.
    Liu C; Ersan MS; Plewa MJ; Amy G; Karanfil T
    Water Res; 2019 Oct; 162():115-126. PubMed ID: 31255781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of permanganate/bisulfite pre-oxidation on DBP formation during the post chlorine disinfection of ciprofloxacin-contaminated waters.
    Wang G; Shi W; Ma D; Gao B
    Sci Total Environ; 2020 Aug; 731():138755. PubMed ID: 32402911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposition of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) during chlorination and consequent disinfection byproducts formation.
    Cao Y; Hu S; Gong T; Xian Q; Xu B
    Water Res; 2019 Aug; 159():365-374. PubMed ID: 31112889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation characteristics of disinfection byproducts from four different algal organic matter during chlorination and chloramination.
    Zhai H; Cheng S; Zhang L; Luo W; Zhou Y
    Chemosphere; 2022 Dec; 308(Pt 1):136171. PubMed ID: 36037959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of trihalomethanes and haloacetic acids from 2,6-dichloro-1,4-benzoquinone during chlorination: Decomposition kinetics, conversion rates, and pathways.
    Zhai H; Zhao J; Wang R; Yan Y; Yu S; Zhao Y
    Chemosphere; 2022 Mar; 291(Pt 1):132729. PubMed ID: 34718017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and control of C- and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment.
    Qian Y; Chen Y; Hu Y; Hanigan D; Westerhoff P; An D
    Water Res; 2021 Apr; 194():116964. PubMed ID: 33652228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of iodinated trihalomethanes during chlorination of amino acid in waters.
    Li C; Lin Q; Dong F; Li Y; Luo F; Zhang K
    Chemosphere; 2019 Feb; 217():355-363. PubMed ID: 30419389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.