These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37710994)

  • 41. Efficient and Stable FASnI
    Liao M; Yu BB; Jin Z; Chen W; Zhu Y; Zhang X; Yao W; Duan T; Djerdj I; He Z
    ChemSusChem; 2019 Nov; 12(22):5007-5014. PubMed ID: 31468722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In Situ Interfacial Passivation of Sn-Based Perovskite Films with a Bi-functional Ionic Salt for Enhanced Photovoltaic Performance.
    Lin Y; Liu J; Hu J; Ran C; Chen Y; Xing G; Xia Y; Chen Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58809-58817. PubMed ID: 34823351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multifunctional Molecule Assists Passivate Method to Simultaneously Improve the Efficiency and Stability of Perovskite Solar Cells.
    Meng X; Shen B; Sun Q; Deng J; Hu D; Kang B; Silva SRP; Wang X; Wang L
    ChemSusChem; 2023 Apr; 16(7):e202202092. PubMed ID: 36629755
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bidirectional Anions Gathering Strategy Afford Efficient Mixed PbSn Perovskite Solar Cells.
    Tao Y; Liang Z; Ye J; Xu H; Liu G; Aldakov D; Pan X; Reiss P; Tian X
    Small; 2023 May; 19(20):e2207480. PubMed ID: 36840656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced Efficiency of Air-Stable CsPbBr
    Zhang W; Liu X; He B; Zhu J; Li X; Shen K; Chen H; Duan Y; Tang Q
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36092-36101. PubMed ID: 32663398
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solution-Processed Ternary Tin (II) Alloy as Hole-Transport Layer of Sn-Pb Perovskite Solar Cells for Enhanced Efficiency and Stability.
    Yu Z; Wang J; Chen B; Uddin MA; Ni Z; Yang G; Huang J
    Adv Mater; 2022 Dec; 34(49):e2205769. PubMed ID: 36177689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rear-Surface Passivation by Melaminium Iodide Additive for Stable and Hysteresis-less Perovskite Solar Cells.
    Kim SG; Chen J; Seo JY; Kang DH; Park NG
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25372-25383. PubMed ID: 29993240
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antioxidant Grain Passivation for Air-Stable Tin-Based Perovskite Solar Cells.
    Tai Q; Guo X; Tang G; You P; Ng TW; Shen D; Cao J; Liu CK; Wang N; Zhu Y; Lee CS; Yan F
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):806-810. PubMed ID: 30499609
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revealing the Role of Tin Fluoride Additive in Narrow Bandgap Pb-Sn Perovskites for Highly Efficient Flexible All-Perovskite Tandem Cells.
    Kurisinkal Pious J; Zwirner Y; Lai H; Olthof S; Jeangros Q; Gilshtein E; Kothandaraman RK; Artuk K; Wechsler P; Chen C; Wolff CM; Zhao D; Tiwari AN; Fu F
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36758226
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ligand Engineering in Tin-Based Perovskite Solar Cells.
    Li P; Cao X; Li J; Jiao B; Hou X; Hao F; Ning Z; Bian Z; Xi J; Ding L; Wu Z; Dong H
    Nanomicro Lett; 2023 Jul; 15(1):167. PubMed ID: 37395847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alkali Metal Fluoride-Modified Tin Oxide for n-i-p Planar Perovskite Solar Cells.
    Wang C; Wu J; Wang S; Liu X; Wang X; Yan Z; Chen L; Liu X; Li G; Sun W; Lan Z
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50083-50092. PubMed ID: 34648264
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lead-Free Perovskite Homojunction-Based HTM-Free Perovskite Solar Cells: Theoretical and Experimental Viewpoints.
    Sajid S; Alzahmi S; Salem IB; Park J; Obaidat IM
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985875
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strategies for Improving the Stability of Tin-Based Perovskite (ASnX
    Yao H; Zhou F; Li Z; Ci Z; Ding L; Jin Z
    Adv Sci (Weinh); 2020 May; 7(10):1903540. PubMed ID: 32440480
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substitution of Ethylammonium Halides Enabling Lead-Free Tin-Based Perovskite Solar Cells with Enhanced Efficiency and Stability.
    Huang Y; Jiang Y; Zou S; Zhang Z; Jin J; He R; Hu W; Ren S; Zhao D
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15775-15784. PubMed ID: 36917728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of Fluorinated Components on Perovskite Solar Cells Performance and Stability.
    Ouedraogo NAN; Yan H; Han CB; Zhang Y
    Small; 2021 Feb; 17(8):e2004081. PubMed ID: 33522104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO
    Chiang CH; Kan CW; Wu CG
    ACS Appl Mater Interfaces; 2021 May; 13(20):23606-23615. PubMed ID: 33974384
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly Efficient CsPbBr
    Wang D; Li W; Du Z; Li G; Sun W; Wu J; Lan Z
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10579-10587. PubMed ID: 32048823
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Performance Planar Perovskite Solar Cells with a Reduced Energy Barrier and Enhanced Charge Extraction via a Na
    Xiao B; Li X; Yi Z; Luo Y; Jiang Q; Yang J
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7962-7971. PubMed ID: 35119820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Efficient and Stable Perovskite Solar Cells: Competitive Crystallization Strategy and Synergistic Passivation.
    Jiao B; Che Z; Quan Z; Wu W; Hu K; Li X; Liu F
    Small; 2023 Aug; 19(35):e2301630. PubMed ID: 37118850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thiocyanate-Passivated Diaminonaphthalene-Incorporated Dion-Jacobson Perovskite for Highly Efficient and Stable Solar Cells.
    Yukta ; Chavan RD; Prochowicz D; Yadav P; Tavakoli MM; Satapathi S
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):850-860. PubMed ID: 34978806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.