BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 3771147)

  • 1. Kinetics of ascorbate transport by cultured retinal capillary pericytes. Inhibition by glucose.
    Khatami M; Li WY; Rockey JH
    Invest Ophthalmol Vis Sci; 1986 Nov; 27(11):1665-71. PubMed ID: 3771147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+-linked active transport of ascorbate into cultured bovine retinal pigment epithelial cells: heterologous inhibition by glucose.
    Khatami M
    Membr Biochem; 1987-1988; 7(2):115-30. PubMed ID: 3331406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-associated proteoglycans of retinal pericytes and endothelial cells: modulation by glucose and ascorbic acid.
    Fisher EJ; McLennan SV; Yue DK; Turtle JR
    Microvasc Res; 1994 Sep; 48(2):179-89. PubMed ID: 7854204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of ascorbic acid entry into aqueous and vitreous humors of the rat and guinea pig.
    DiMattio J
    Invest Ophthalmol Vis Sci; 1989 Nov; 30(11):2320-31. PubMed ID: 2807790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascorbate transport in cultured cat retinal pigment epithelial cells.
    Khatami M; Stramm LE; Rockey JH
    Exp Eye Res; 1986 Oct; 43(4):607-15. PubMed ID: 3792463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of sodium-dependent glucose uptake by captopril improves high-glucose-induced morphological and functional changes of cultured bovine retinal pericytes.
    Wakisaka M; Yoshinari M; Nakamura S; Asano T; Sonoki K; Shi Ah; Iwase M; Takata Y; Fujishima M
    Microvasc Res; 1999 Nov; 58(3):215-23. PubMed ID: 10527765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Troglitazone reverses the inhibition of nitric oxide production by high glucose in cultured bovine retinal pericytes.
    Kim J; Oh YS; Shinn SH
    Exp Eye Res; 2005 Jul; 81(1):65-70. PubMed ID: 15978256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-competitive inhibition of myo-inositol transport in cultured bovine retinal capillary pericytes by glucose and reversal by Sorbinil.
    Li W; Chan LS; Khatami M; Rockey JH
    Biochim Biophys Acta; 1986 May; 857(2):198-208. PubMed ID: 3085711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facilitated glucose and dehydroascorbate transport in plant mitochondria.
    Szarka A; Horemans N; Bánhegyi G; Asard H
    Arch Biochem Biophys; 2004 Aug; 428(1):73-80. PubMed ID: 15234271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexose transport in normal and SV40-transformed human endothelial cells in culture.
    Corkey RF; Corkey BE; Gimbrone MA
    J Cell Physiol; 1981 Mar; 106(3):425-34. PubMed ID: 6260823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular protein glycation in cultured retinal capillary pericytes and endothelial cells exposed to high-glucose concentration.
    Chibber R; Molinatti PA; Kohner EM
    Cell Mol Biol (Noisy-le-grand); 1999 Feb; 45(1):47-57. PubMed ID: 10099839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells.
    Spielholz C; Golde DW; Houghton AN; Nualart F; Vera JC
    Cancer Res; 1997 Jun; 57(12):2529-37. PubMed ID: 9192836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monosaccharide transport by Eimeria tenella sporozoites.
    Smith CK; Lee DE
    J Parasitol; 1986 Feb; 72(1):163-9. PubMed ID: 3712172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic amino acid transporter 1-mediated L-arginine transport at the inner blood-retinal barrier.
    Tomi M; Kitade N; Hirose S; Yokota N; Akanuma S; Tachikawa M; Hosoya K
    J Neurochem; 2009 Nov; 111(3):716-25. PubMed ID: 19712052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells.
    Sato S; Secchi EF; Lizak MJ; Fukase S; Ohta N; Murata M; Tsai JY; Kador PF
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):697-704. PubMed ID: 10067973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth regulation of bovine retinal pericytes by transforming growth factor-beta2 and plasmin.
    Katsura MK; Mishima HK; Minamoto A; Ishibashi F; Yamashita H
    Curr Eye Res; 2000 Mar; 20(3):166-72. PubMed ID: 10694890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of glucose transport by bovine retinal capillary pericytes in culture.
    Li W; Chan LS; Khatami M; Rockey JH
    Exp Eye Res; 1985 Aug; 41(2):191-9. PubMed ID: 3905422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascorbic acid transport and distribution in human B lymphocytes.
    Bergsten P; Yu R; Kehrl J; Levine M
    Arch Biochem Biophys; 1995 Feb; 317(1):208-14. PubMed ID: 7872786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of (2-chloroethyl)-3-sarcosinamide-1-nitrosourea in the human glioma cell line SK-MG-1 is mediated by an epinephrine-sensitive carrier system.
    Noë AJ; Malapetsa A; Panasci LC
    Mol Pharmacol; 1993 Jul; 44(1):204-9. PubMed ID: 8341272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual effect of lipid peroxidation on the membrane order of retinal cells in culture.
    Rego AC; Oliveira CR
    Arch Biochem Biophys; 1995 Aug; 321(1):127-36. PubMed ID: 7639511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.