These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37711840)

  • 1. Computed tomography angiography-based radiomics model to identify high-risk carotid plaques.
    Chen C; Tang W; Chen Y; Xu W; Yu N; Liu C; Li Z; Tang Z; Zhang X
    Quant Imaging Med Surg; 2023 Sep; 13(9):6089-6104. PubMed ID: 37711840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics Signatures of Carotid Plaque on Computed Tomography Angiography : An Approach to Identify Symptomatic Plaques.
    Shi J; Sun Y; Hou J; Li X; Fan J; Zhang L; Zhang R; You H; Wang Z; Zhang A; Zhang J; Jin Q; Zhao L; Yang B
    Clin Neuroradiol; 2023 Dec; 33(4):931-941. PubMed ID: 37195452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial experience with radiomics of carotid perivascular adipose tissue in identifying symptomatic plaque.
    Nie JY; Chen WX; Zhu Z; Zhang MY; Zheng YJ; Wu QD
    Front Neurol; 2024; 15():1340202. PubMed ID: 38434202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiomics versus Conventional Assessment to Identify Symptomatic Participants at Carotid Computed Tomography Angiography.
    Dong Z; Zhou C; Li H; Shi J; Liu J; Liu Q; Su X; Zhang F; Cheng X; Lu G
    Cerebrovasc Dis; 2022; 51(5):647-654. PubMed ID: 35259744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning.
    Zhang R; Zhang Q; Ji A; Lv P; Zhang J; Fu C; Lin J
    Eur Radiol; 2021 May; 31(5):3116-3126. PubMed ID: 33068185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of vulnerable carotid plaque with CT-based radiomics nomogram.
    Liu M; Chang N; Zhang S; Du Y; Zhang X; Ren W; Sun J; Bai J; Wang L; Zhang G
    Clin Radiol; 2023 Nov; 78(11):e856-e863. PubMed ID: 37633746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT angiography-based radiomics as a tool for carotid plaque characterization: a pilot study.
    Cilla S; Macchia G; Lenkowicz J; Tran EH; Pierro A; Petrella L; Fanelli M; Sardu C; Re A; Boldrini L; Indovina L; De Filippo CM; Caradonna E; Deodato F; Massetti M; Valentini V; Modugno P
    Radiol Med; 2022 Jul; 127(7):743-753. PubMed ID: 35680773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computed tomography angiography-based radiomics model for predicting carotid atherosclerotic plaque vulnerability.
    Shan D; Wang S; Wang J; Lu J; Ren J; Chen J; Wang D; Qi P
    Front Neurol; 2023; 14():1151326. PubMed ID: 37396779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying vulnerable plaques: A 3D carotid plaque radiomics model based on HRMRI.
    Zhang X; Hua Z; Chen R; Jiao Z; Shan J; Li C; Li Z
    Front Neurol; 2023; 14():1050899. PubMed ID: 36779063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving radiomic modeling for the identification of symptomatic carotid atherosclerotic plaques using deep learning-based 3D super-resolution CT angiography.
    Wang L; Guo T; Wang L; Yang W; Wang J; Nie J; Cui J; Jiang P; Li J; Zhang H
    Heliyon; 2024 Apr; 10(8):e29331. PubMed ID: 38644848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Carotid In-Stent Restenosis by Computed Tomography Angiography Carotid Plaque-Based Radiomics.
    Cheng X; Dong Z; Liu J; Li H; Zhou C; Zhang F; Wang C; Zhang Z; Lu G
    J Clin Med; 2022 Jun; 11(11):. PubMed ID: 35683623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting transient ischemic attack risk in patients with mild carotid stenosis using machine learning and CT radiomics.
    Xia H; Yuan L; Zhao W; Zhang C; Zhao L; Hou J; Luan Y; Bi Y; Feng Y
    Front Neurol; 2023; 14():1105616. PubMed ID: 36846119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of high-risk carotid plaque by using carotid perivascular fat density on computed tomography angiography.
    Zhang S; Yu X; Gu H; Kang B; Guo N; Wang X
    Eur J Radiol; 2022 May; 150():110269. PubMed ID: 35349933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis.
    Li XN; Yin WH; Sun Y; Kang H; Luo J; Chen K; Hou ZH; Gao Y; Ren XS; Yu YT; An YQ; Zhang Y; Wang HY; Lu B
    Eur Radiol; 2022 Jun; 32(6):4003-4013. PubMed ID: 35171348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics assessment of carotid intraplaque hemorrhage: detecting the vulnerable patients.
    Zhang S; Gao L; Kang B; Yu X; Zhang R; Wang X
    Insights Imaging; 2022 Dec; 13(1):200. PubMed ID: 36538100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A clinical-radiomics combined model based on carotid atherosclerotic plaque for prediction of ischemic stroke.
    Han N; Hu W; Ma Y; Zheng Y; Yue S; Ma L; Li J; Zhang J
    Front Neurol; 2024; 15():1343423. PubMed ID: 38550341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinguishing Intracranial Diabetes-Related Atherosclerotic Plaques: A High-Resolution Magnetic Resonance Imaging-Based Radiomics Study.
    Cheng X; Li H; Liu J; Zhou C; Liu Q; Chen X; Huang C; Li Y; Zhu W; Lu G
    Cerebrovasc Dis; 2024; 53(1):105-114. PubMed ID: 37044072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of high-risk intracranial plaques with 3D high-resolution magnetic resonance imaging-based radiomics and machine learning.
    Li H; Liu J; Dong Z; Chen X; Zhou C; Huang C; Li Y; Liu Q; Su X; Cheng X; Lu G
    J Neurol; 2022 Dec; 269(12):6494-6503. PubMed ID: 35951103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting coronary artery calcified plaques using perivascular fat CT radiomics features and clinical risk factors.
    Hu GQ; Ge YQ; Hu XK; Wei W
    BMC Med Imaging; 2022 Jul; 22(1):134. PubMed ID: 35906532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning detects symptomatic patients with carotid plaques based on 6-type calcium configuration classification on CT angiography.
    Pisu F; Chen H; Jiang B; Zhu G; Usai MV; Austermann M; Shehada Y; Johansson E; Suri J; Lanzino G; Benson JC; Nardi V; Lerman A; Wintermark M; Saba L
    Eur Radiol; 2024 Jun; 34(6):3612-3623. PubMed ID: 37982835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.