These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37712021)

  • 1. Transition-metal (oxy)nitride photocatalysts for water splitting.
    Chen K; Xiao J; Hisatomi T; Domen K
    Chem Sci; 2023 Sep; 14(35):9248-9257. PubMed ID: 37712021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Narrow-Band-Gap Particulate Photocatalysts for One-Step-Excitation Overall Water Splitting.
    Xiao J; Hisatomi T; Domen K
    Acc Chem Res; 2023 Apr; 56(7):878-888. PubMed ID: 36917677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Design of Particulate Photocatalyst Materials for Green Hydrogen Production.
    Higashi T; Domen K
    ChemSusChem; 2024 May; ():e202400663. PubMed ID: 38794839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tantalum-based semiconductors for solar water splitting.
    Zhang P; Zhang J; Gong J
    Chem Soc Rev; 2014 Jul; 43(13):4395-422. PubMed ID: 24668282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting.
    Wang Z; Li C; Domen K
    Chem Soc Rev; 2019 Apr; 48(7):2109-2125. PubMed ID: 30328438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts.
    Tao X; Zhao Y; Wang S; Li C; Li R
    Chem Soc Rev; 2022 May; 51(9):3561-3608. PubMed ID: 35403632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructure Engineering and Modulation of (Oxy)Nitrides for Application in Visible-Light-Driven Water Splitting.
    Dong B; Cui J; Qi Y; Zhang F
    Adv Mater; 2021 Jul; 33(29):e2004697. PubMed ID: 34085732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Redox-Based Z-Scheme Overall Water Splitting under Visible Light Irradiation.
    Qi Y; Zhang F
    J Phys Chem Lett; 2024 Mar; 15(11):2976-2987. PubMed ID: 38457286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Overall Water Splitting by a Zirconium-Doped TaON-Based Photocatalyst.
    Xiao J; Nishimae S; Vequizo JJM; Nakabayashi M; Hisatomi T; Li H; Lin L; Shibata N; Yamakata A; Inoue Y; Domen K
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202116573. PubMed ID: 35182402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overall Water Splitting by a SrTaO
    Chen K; Xiao J; Vequizo JJM; Hisatomi T; Ma Y; Nakabayashi M; Takata T; Yamakata A; Shibata N; Domen K
    J Am Chem Soc; 2023 Feb; 145(7):3839-3843. PubMed ID: 36669205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production.
    Rahman MZ; Mullins CB
    Acc Chem Res; 2019 Jan; 52(1):248-257. PubMed ID: 30596234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel.
    Mohsin M; Ishaq T; Bhatti IA; Maryam ; Jilani A; Melaibari AA; Abu-Hamdeh NH
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (Oxy)nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting.
    Maeda K
    Phys Chem Chem Phys; 2013 Jul; 15(26):10537-48. PubMed ID: 23337977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway.
    Liu J; Liu Y; Liu N; Han Y; Zhang X; Huang H; Lifshitz Y; Lee ST; Zhong J; Kang Z
    Science; 2015 Feb; 347(6225):970-4. PubMed ID: 25722405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual functionality of the BiN monolayer: unraveling its photocatalytic and piezocatalytic water splitting properties.
    Takhar D; Birajdar B; Ghosh RK
    Phys Chem Chem Phys; 2024 Jun; 26(22):16261-16272. PubMed ID: 38804603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for Efficient Solar Water Splitting Using Carbon Nitride.
    Yang Y; Wang S; Li Y; Wang J; Wang L
    Chem Asian J; 2017 Jul; 12(13):1421-1434. PubMed ID: 28556595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric Carbon Nitride-Derived Photocatalysts for Water Splitting and Nitrogen Fixation.
    Zhang D; He W; Ye J; Gao X; Wang D; Song J
    Small; 2021 Apr; 17(13):e2005149. PubMed ID: 33690963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting.
    Navalón S; Dhakshinamoorthy A; Álvaro M; Ferrer B; García H
    Chem Rev; 2023 Jan; 123(1):445-490. PubMed ID: 36503233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Oxygen Carrier Materials and Related Thermochemical Redox Processes for Concentrating Solar Thermal Applications.
    Abanades S
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies.
    Wang Q; Domen K
    Chem Rev; 2020 Jan; 120(2):919-985. PubMed ID: 31393702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.