These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37712095)

  • 1. Neuromusculoskeletal model-informed machine learning-based control of a knee exoskeleton with uncertainties quantification.
    Zhang L; Zhang X; Zhu X; Wang R; Gutierrez-Farewik EM
    Front Neurosci; 2023; 17():1254088. PubMed ID: 37712095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Joint Torque by EMG-Driven Neuromusculoskeletal Models and LSTM Networks.
    Zhang L; Soselia D; Wang R; Gutierrez-Farewik EM
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3722-3731. PubMed ID: 37708013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ankle Joint Torque Prediction Using an NMS Solver Informed-ANN Model and Transfer Learning.
    Zhang L; Zhu X; Gutierrez-Farewik EM; Wang R
    IEEE J Biomed Health Inform; 2022 Dec; 26(12):5895-5906. PubMed ID: 36112547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-in-the-Loop Optimization of Knee Exoskeleton Assistance for Minimizing User's Metabolic and Muscular Effort.
    Monteiro S; Figueiredo J; Fonseca P; Vilas-Boas JP; Santos CP
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T
    Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy.
    Lerner ZF; Damiano DL; Bulea TC
    J Biomech; 2019 Apr; 87():142-149. PubMed ID: 30862380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and Simulation of a Human Knee Exoskeleton's Assistive Strategies and Interaction.
    Zhang L; Liu Y; Wang R; Smith C; Gutierrez-Farewik EM
    Front Neurorobot; 2021; 15():620928. PubMed ID: 33762922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Day EMG-Based Knee Joint Torque Estimation Using Hybrid Neuromusculoskeletal Modelling and Convolutional Neural Networks.
    Schulte RV; Zondag M; Buurke JH; Prinsen EC
    Front Robot AI; 2022; 9():869476. PubMed ID: 35546902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.
    Lerner ZF; Damiano DL; Bulea TC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Differentiable Dynamic Model for Musculoskeletal Simulation and Exoskeleton Control.
    Kuo CH; Chen JW; Yang Y; Lan YH; Lu SW; Wang CF; Lo YC; Lin CL; Lin SH; Chen PC; Chen YY
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton.
    Lee D; McLain B; Kang I; Young A
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2870-2879. PubMed ID: 34033531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy.
    Chen J; Hochstein J; Kim C; Tucker L; Hammel LE; Damiano DL; Bulea TC
    Front Robot AI; 2021; 8():702137. PubMed ID: 34222356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial sensors for gait monitoring and design of adaptive controllers for exoskeletons after stroke: a feasibility study.
    De Miguel-Fernández J; Salazar-Del Rio M; Rey-Prieto M; Bayón C; Guirao-Cano L; Font-Llagunes JM; Lobo-Prat J
    Front Bioeng Biotechnol; 2023; 11():1208561. PubMed ID: 37744246
    [No Abstract]   [Full Text] [Related]  

  • 17. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off.
    Grazi L; Crea S; Parri A; Molino Lova R; Micera S; Vitiello N
    Front Neurosci; 2018; 12():71. PubMed ID: 29491830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking.
    Chang CH; Casas J; Brose SW; Duenas VH
    Front Robot AI; 2021; 8():702860. PubMed ID: 35127833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.
    Peternel L; Noda T; Petrič T; Ude A; Morimoto J; Babič J
    PLoS One; 2016; 11(2):e0148942. PubMed ID: 26881743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.