These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37712114)

  • 1. Deep eutectic solvent-based modified quick, easy, cheap, effective, rugged, and safe extraction combined with solidification of floating organic droplet-dispersive liquid-liquid microextraction of some pesticides from canola oil followed by gas chromatography analysis.
    Arvanaghi M; Javadi A; Afshar Mogaddam MR
    J Sep Sci; 2023 Oct; 46(20):e2300149. PubMed ID: 37712114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of dispersive solid phase extraction with solidification organic drop-dispersive liquid-liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples.
    Zahiri E; Khandaghi J; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2020 Sep; 1627():461390. PubMed ID: 32823096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; application in determination of some pesticides in milk samples.
    Jouyban A; Farajzadeh MA; Afshar Mogaddam MR
    Talanta; 2020 Jan; 206():120169. PubMed ID: 31514834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersive solid phase extraction combined with solidification of floating organic drop-liquid-liquid microextraction using in situ formation of deep eutectic solvent for extraction of phytosterols from edible oil samples.
    Afshar Mogaddam MR; Farajzadeh MA; Azadmard Damirchi S; Nemati M
    J Chromatogr A; 2020 Sep; 1630():461523. PubMed ID: 32920246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of in-situ formed polymer-based dispersive solid phase extraction in combination with solidification of floating organic droplet-based dispersive liquid-liquid microextraction for the extraction of neonicotinoid pesticides from milk samples.
    Anvar Nojedeh Sadat S; Atazadeh R; Afshar Mogaddam MR
    J Sep Sci; 2023 Jul; 46(13):e2200889. PubMed ID: 37058712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of microwave-assisted solvent extraction and effervescence-assisted deep eutectic solvent-based in-syringe dispersive liquid-liquid microextraction and its application in the extraction of triazine pesticides from apple samples.
    Safaei S; Atazadeh R; Afshar Mogaddam MR
    J Sep Sci; 2022 Oct; 45(19):3735-3744. PubMed ID: 35932475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of a modified quick, easy, cheap, efficient, rugged, and safe extraction method with a deep eutectic solvent based microwave-assisted dispersive liquid-liquid microextraction: Application in extraction and preconcentration of multiclass pesticide residues in tomato samples.
    Farajzadeh MA; Sohrabi H; Mohebbi A; Mogaddam MRA
    J Sep Sci; 2019 Mar; 42(6):1273-1280. PubMed ID: 30653827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modified quick-easy-cheap-effective-rugged-and-safe method involving carbon nano-onions-based dispersive solid-phase extraction and dispersive liquid-liquid microextraction for pesticides from grapes.
    Mokhtari S; Khosrowshahi EM; Farajzadeh MA; Nemati M; Afshar Mogaddam MR
    J Sep Sci; 2022 Sep; 45(18):3582-3593. PubMed ID: 35964286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a stir bar sorptive extraction method coupled to solidification of floating droplets dispersive liquid-liquid microextraction based on deep eutectic solvents for the extraction of acidic pesticides from tomato samples.
    Nemati M; Farajzadeh MA; Mohebbi A; Khodadadeian F; Afshar Mogaddam MR
    J Sep Sci; 2020 Mar; 43(6):1119-1127. PubMed ID: 31876075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified QuEChERS in combination with dispersive liquid-liquid microextraction based on solidification of the floating organic droplet method for the determination of organophosphorus pesticides in milk samples.
    Miao XX; Liu DB; Wang YR; Yang YY; Yang XY; Gong HR
    J Chromatogr Sci; 2015; 53(10):1813-20. PubMed ID: 26270080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep eutectic solvent-based pressurized liquid extraction combined with dispersive liquid-liquid microextraction of organophosphorus pesticide residues in egg powder prior to high-performance liquid chromatography analysis.
    Zareasghari O; Javadi A; Afshar Mogaddam MR
    J Sep Sci; 2024 Mar; 47(5):e2300070. PubMed ID: 38466171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet followed by gas chromatography for the determination of eight pyrethroid pesticides in tea samples.
    Hou X; Zheng X; Zhang C; Ma X; Ling Q; Zhao L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Oct; 969():123-7. PubMed ID: 25168796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of organic solvents-free mode of solidification of floating organic droplet-based dispersive liquid-liquid microextraction for the extraction of polycyclic aromatic hydrocarbons from honey samples before their determination by gas chromatography-mass spectrometry.
    Fazaieli F; Afshar Mogaddam MR; Farajzadeh MA; Feriduni B; Mohebbi A
    J Sep Sci; 2020 Jun; 43(12):2393-2400. PubMed ID: 32145048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a green miniaturized quick, easy, cheap, effective, rugged, and safe approach in tandem with temperature-assisted solidification of floating menthol droplet for analysis of multiclass pesticide residues in milk.
    Sereshti H; Jazani SS; Nouri N; AliAbadi MHS
    J Sep Sci; 2022 Mar; 45(5):1106-1115. PubMed ID: 34958521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-phase solvent extraction system combined with deep eutectic solvent-based dispersive liquid-liquid microextraction for extraction of some organochlorine pesticides in cocoa samples prior to gas chromatography with electron capture detection.
    Mardani A; Afshar Mogaddam MR; Farajzadeh MA; Mohebbi A; Nemati M; Torbati M
    J Sep Sci; 2020 Sep; 43(18):3674-3682. PubMed ID: 32700804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of a green high density deep eutectic solvent and its application in microextraction of seven widely used pesticides from honey.
    Farajzadeh MA; Abbaspour M; Kazemian R
    J Chromatogr A; 2019 Oct; 1603():51-60. PubMed ID: 31262512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of organophosphorus and pyrethroid pesticides in organic and conventional vegetables using QuEChERS combined with dispersive liquid-liquid microextraction based on the solidification of floating organic droplet.
    Mao X; Wan Y; Li Z; Chen L; Lew H; Yang H
    Food Chem; 2020 Mar; 309():125755. PubMed ID: 31704075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A natural deep eutectic solvent as a novel dispersive solvent in dispersive liquid-liquid microextraction based on solidification of floating organic droplet for the determination of pesticide residues.
    Carbonell-Rozas L; Canales R; Lara FJ; García-Campaña AM; Silva MF
    Anal Bioanal Chem; 2021 Oct; 413(25):6413-6424. PubMed ID: 34410442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.