BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 37712185)

  • 21. Exploring the Patent Landscape and Innovation of Hydrogel-based Bioinks Used for 3D Bioprinting.
    Fatimi A
    Recent Adv Drug Deliv Formul; 2022; 16(2):145-163. PubMed ID: 35507801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioprinting: From Technique to Application in Tissue Engineering and Regenerative Medicine.
    de Souza TV; Pastena Giorno L; Malmonge SM; Santos AR
    Curr Mol Med; 2023; 23(9):934-951. PubMed ID: 36017861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications.
    Sekar MP; Suresh S; Zennifer A; Sethuraman S; Sundaramurthi D
    ACS Biomater Sci Eng; 2023 Jun; 9(6):3134-3159. PubMed ID: 37115515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-decellularized printing of cartilage extracellular matrix: distinction between biomaterial ink and bioink.
    Mokhtarinia K; Masaeli E
    Biomater Sci; 2023 Mar; 11(7):2317-2329. PubMed ID: 36751955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extrusion-Based 3D Bioprinting of Adhesive Tissue Engineering Scaffolds Using Hybrid Functionalized Hydrogel Bioinks.
    Chen S; Tomov ML; Ning L; Gil CJ; Hwang B; Bauser-Heaton H; Chen H; Serpooshan V
    Adv Biol (Weinh); 2023 Jul; 7(7):e2300124. PubMed ID: 37132122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tethered TGF-β1 in a Hyaluronic Acid-Based Bioink for Bioprinting Cartilaginous Tissues.
    Hauptstein J; Forster L; Nadernezhad A; Groll J; Teßmar J; Blunk T
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting.
    Bedell ML; Torres AL; Hogan KJ; Wang Z; Wang B; Melchiorri AJ; Grande-Allen KJ; Mikos AG
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinspired Processing: Complex Coacervates as Versatile Inks for 3D Bioprinting.
    Khoonkari M; Es Sayed J; Oggioni M; Amirsadeghi A; Dijkstra P; Parisi D; Kruyt F; van Rijn P; Włodarczyk-Biegun MK; Kamperman M
    Adv Mater; 2023 Jul; 35(28):e2210769. PubMed ID: 36916861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality.
    Hull SM; Brunel LG; Heilshorn SC
    Adv Mater; 2022 Jan; 34(2):e2103691. PubMed ID: 34672027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smart biomaterials: From 3D printing to 4D bioprinting.
    Amukarimi S; Rezvani Z; Eghtesadi N; Mozafari M
    Methods; 2022 Sep; 205():191-199. PubMed ID: 35810960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-crosslinking hyaluronic acid-carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering.
    Janarthanan G; Shin HS; Kim IG; Ji P; Chung EJ; Lee C; Noh I
    Biofabrication; 2020 Sep; 12(4):045026. PubMed ID: 32629438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications.
    Teixeira MC; Lameirinhas NS; Carvalho JPF; Silvestre AJD; Vilela C; Freire CSR
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modified mannan for 3D bioprinting: a potential novel bioink for tissue engineering.
    Huang Y; Zhou Z; Hu Y; He N; Li J; Han X; Zhao G; Liu H
    Biomed Mater; 2021 Aug; 16(5):. PubMed ID: 34348252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities.
    Mueller E; Poulin I; Bodnaryk WJ; Hoare T
    Biomacromolecules; 2022 Mar; 23(3):619-640. PubMed ID: 34989569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blends of gelatin and hyaluronic acid stratified by stereolithographic bioprinting approximate cartilaginous matrix gradients.
    Shopperly LK; Spinnen J; Krüger JP; Endres M; Sittinger M; Lam T; Kloke L; Dehne T
    J Biomed Mater Res B Appl Biomater; 2022 Oct; 110(10):2310-2322. PubMed ID: 35532378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.