BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 37712185)

  • 41. Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting.
    Wang C; Honiball JR; Lin J; Xia X; Lau DSA; Chen B; Deng L; Lu WW
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27575-27588. PubMed ID: 35674114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Jammed Micro-Flake Hydrogel for Four-Dimensional Living Cell Bioprinting.
    Ding A; Jeon O; Cleveland D; Gasvoda KL; Wells D; Lee SJ; Alsberg E
    Adv Mater; 2022 Apr; 34(15):e2109394. PubMed ID: 35065000
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis.
    Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanocomposite bioinks for 3D bioprinting.
    Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC
    Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths.
    Zhou K; Sun Y; Yang J; Mao H; Gu Z
    J Mater Chem B; 2022 Mar; 10(12):1897-1907. PubMed ID: 35212327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advances and Future Perspectives in 4D Bioprinting.
    Ashammakhi N; Ahadian S; Zengjie F; Suthiwanich K; Lorestani F; Orive G; Ostrovidov S; Khademhosseini A
    Biotechnol J; 2018 Dec; 13(12):e1800148. PubMed ID: 30221837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
    Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F
    Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics.
    Shams E; Barzad MS; Mohamadnia S; Tavakoli O; Mehrdadfar A
    J Biomater Appl; 2022 Aug; 37(2):355-372. PubMed ID: 35510845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stretchable and self-healable hyaluronate-based hydrogels for three-dimensional bioprinting.
    Kim HS; Lee KY
    Carbohydr Polym; 2022 Nov; 295():119846. PubMed ID: 35988998
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photocurable Biopolymers for Coaxial Bioprinting.
    Costantini M; Barbetta A; Swieszkowski W; Seliktar D; Gargioli C; Rainer A
    Methods Mol Biol; 2021; 2147():45-54. PubMed ID: 32840809
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127.
    Shamma RN; Sayed RH; Madry H; El Sayed NS; Cucchiarini M
    Tissue Eng Part B Rev; 2022 Apr; 28(2):451-463. PubMed ID: 33820451
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Advancing Frontiers in Bone Bioprinting.
    Ashammakhi N; Hasan A; Kaarela O; Byambaa B; Sheikhi A; Gaharwar AK; Khademhosseini A
    Adv Healthc Mater; 2019 Apr; 8(7):e1801048. PubMed ID: 30734530
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking.
    Hahn L; Beudert M; Gutmann M; Keßler L; Stahlhut P; Fischer L; Karakaya E; Lorson T; Thievessen I; Detsch R; Lühmann T; Luxenhofer R
    Macromol Biosci; 2021 Oct; 21(10):e2100122. PubMed ID: 34292657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies.
    Chimene D; Kaunas R; Gaharwar AK
    Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cucurbit[8]uril Mediated Supramolecular and Photocrosslinked Interpenetrating Network Hydrogel Matrices for 3D-Bioprinting.
    Wang Y; Bimmermann AM; Neufurth M; Besenius P
    Adv Mater; 2024 Jun; 36(26):e2313270. PubMed ID: 38538535
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting.
    Wenz A; Borchers K; Tovar GEM; Kluger PJ
    Biofabrication; 2017 Nov; 9(4):044103. PubMed ID: 28990579
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multilayered and heterogeneous hydrogel construct printing system with crosslinking aerosol.
    Lee G; Kim SJ; Chun H; Park JK
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.