These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37712780)

  • 1. Synergy of semiempirical models and machine learning in computational chemistry.
    Fedik N; Nebgen B; Lubbers N; Barros K; Kulichenko M; Li YW; Zubatyuk R; Messerly R; Isayev O; Tretiak S
    J Chem Phys; 2023 Sep; 159(11):. PubMed ID: 37712780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics.
    Zhou G; Lubbers N; Barros K; Tretiak S; Nebgen B
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2120333119. PubMed ID: 35776544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab Initio Machine Learning in Chemical Compound Space.
    Huang B; von Lilienfeld OA
    Chem Rev; 2021 Aug; 121(16):10001-10036. PubMed ID: 34387476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations.
    Dral PO; von Lilienfeld OA; Thiel W
    J Chem Theory Comput; 2015 May; 11(5):2120-2125. PubMed ID: 26146493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back.
    Aldossary A; Campos-Gonzalez-Angulo JA; Pablo-García S; Leong SX; Rajaonson EM; Thiede L; Tom G; Wang A; Avagliano D; Aspuru-Guzik A
    Adv Mater; 2024 May; ():e2402369. PubMed ID: 38794859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Interatomic Potentials and Long-Range Physics.
    Anstine DM; Isayev O
    J Phys Chem A; 2023 Mar; 127(11):2417-2431. PubMed ID: 36802360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.
    Ramakrishnan R; Dral PO; Rupp M; von Lilienfeld OA
    J Chem Theory Comput; 2015 May; 11(5):2087-96. PubMed ID: 26574412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treating Semiempirical Hamiltonians as Flexible Machine Learning Models Yields Accurate and Interpretable Results.
    Hu F; He F; Yaron DJ
    J Chem Theory Comput; 2023 Sep; 19(18):6185-6196. PubMed ID: 37705220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects.
    Unke OT; Chmiela S; Gastegger M; Schütt KT; Sauceda HE; Müller KR
    Nat Commun; 2021 Dec; 12(1):7273. PubMed ID: 34907176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph-EAM: An Interpretable and Efficient Graph Neural Network Potential Framework.
    Yang J; Chen Z; Sun H; Samanta A
    J Chem Theory Comput; 2023 Sep; 19(17):5910-5923. PubMed ID: 37581304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mixed Quantum Chemistry/Machine Learning Approach for the Fast and Accurate Prediction of Biochemical Redox Potentials and Its Large-Scale Application to 315 000 Redox Reactions.
    Jinich A; Sanchez-Lengeling B; Ren H; Harman R; Aspuru-Guzik A
    ACS Cent Sci; 2019 Jul; 5(7):1199-1210. PubMed ID: 31404220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Putting Chemical Knowledge to Work in Machine Learning for Reactivity.
    Jorner K
    Chimia (Aarau); 2023 Feb; 77(1-2):22-30. PubMed ID: 38047850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations.
    Wang G; Wang C; Zhang X; Li Z; Zhou J; Sun Z
    iScience; 2024 May; 27(5):109673. PubMed ID: 38646181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Accuracy and Transferability of Machine Learning Chemical Activation Energies by Adding Electronic Structure Information.
    Marques E; de Gendt S; Pourtois G; van Setten MJ
    J Chem Inf Model; 2023 Mar; 63(5):1454-1461. PubMed ID: 36864757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.
    Wu J; Shen L; Yang W
    J Chem Phys; 2017 Oct; 147(16):161732. PubMed ID: 29096448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence.
    Zubatiuk T; Isayev O
    Acc Chem Res; 2021 Apr; 54(7):1575-1585. PubMed ID: 33715355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis.
    Xu J; Cao XM; Hu P
    Phys Chem Chem Phys; 2021 May; 23(19):11155-11179. PubMed ID: 33972971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
    Janet JP; Duan C; Nandy A; Liu F; Kulik HJ
    Acc Chem Res; 2021 Feb; 54(3):532-545. PubMed ID: 33480674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.