BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37712919)

  • 1. Function of revolute zygapophyses in the lumbar vertebrae of early placental mammals.
    Kort AE; Jones KE
    Anat Rec (Hoboken); 2024 May; 307(5):1918-1929. PubMed ID: 37712919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Running, jumping, hunting, and scavenging: Functional analysis of vertebral mobility and backbone properties in carnivorans.
    Belyaev RI; Nikolskaia P; Bushuev AV; Panyutina AA; Kozhanova DA; Prilepskaya NE
    J Anat; 2024 Feb; 244(2):205-231. PubMed ID: 37837214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How the even-toed ungulate vertebral column works: Comparison of intervertebral mobility in 33 genera.
    Belyaev RI; Kuznetsov AN; Prilepskaya NE
    J Anat; 2021 Dec; 239(6):1370-1399. PubMed ID: 34365661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Truly dorsostable runners: Vertebral mobility in rhinoceroses, tapirs, and horses.
    Belyaev RI; Kuznetsov AN; Prilepskaya NE
    J Anat; 2023 Apr; 242(4):568-591. PubMed ID: 36519561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sagittal spine movements of small therian mammals during asymmetrical gaits.
    Schilling N; Hackert R
    J Exp Biol; 2006 Oct; 209(Pt 19):3925-39. PubMed ID: 16985208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased variation in numbers of presacral vertebrae in suspensory mammals.
    Williams SA; Spear JK; Petrullo L; Goldstein DM; Lee AB; Peterson AL; Miano DA; Kaczmarek EB; Shattuck MR
    Nat Ecol Evol; 2019 Jun; 3(6):949-956. PubMed ID: 31086278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Late Cretaceous eutherian Zalambdalestes reveals unique axis and complex evolution of the mammalian neck.
    Arnold P; Janiszewska K; Li Q; O'Connor JK; Fostowicz-Frelik Ł
    Sci Bull (Beijing); 2024 Jun; 69(11):1767-1775. PubMed ID: 38702276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanistic approach for the calculation of intervertebral mobility in mammals based on vertebrae osteometry.
    Belyaev RI; Kuznetsov AN; Prilepskaya NE
    J Anat; 2021 Jan; 238(1):113-130. PubMed ID: 32951205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Placement of the diaphragmatic vertebra in catarrhines: implications for the evolution of dorsostability in hominoids and bipedalism in hominins.
    Williams SA
    Am J Phys Anthropol; 2012 May; 148(1):111-22. PubMed ID: 22419482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights on equid locomotor evolution from the lumbar region of fossil horses.
    Jones KE
    Proc Biol Sci; 2016 Apr; 283(1829):. PubMed ID: 27122554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lumbar vertebral morphology of flying, gliding, and suspensory mammals: implications for the locomotor behavior of the subfossil lemurs Palaeopropithecus and Babakotia.
    Granatosky MC; Miller CE; Boyer DM; Schmitt D
    J Hum Evol; 2014 Oct; 75():40-52. PubMed ID: 25216795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotion in some small to medium-sized mammals: a geometric morphometric analysis of the penultimate lumbar vertebra, pelvis and hindlimbs.
    Álvarez A; Ercoli MD; Prevosti FJ
    Zoology (Jena); 2013 Dec; 116(6):356-71. PubMed ID: 24182890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D kinematic of the thoracolumbar spine in Mangalarga Marchador horses performing the marcha batida gait and being led by hand-A preliminary report.
    Simonato SP; Bernardina GRD; Ferreira LCR; Silvatti AP; Barcelos KMC; da Fonseca BPA
    PLoS One; 2021; 16(7):e0253697. PubMed ID: 34228737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative and functional anatomy of the mammalian lumbar spine.
    Boszczyk BM; Boszczyk AA; Putz R
    Anat Rec; 2001 Oct; 264(2):157-68. PubMed ID: 11590593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine.
    Frobin W; Brinckmann P; Biggemann M; Tillotson M; Burton K
    Clin Biomech (Bristol, Avon); 1997; 12 Suppl 1():S1-S63. PubMed ID: 11430783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development and in vivo biomechanics of goat mobile artificial lumbar spine complex].
    Zhang F; He XJ; Liu JT; Wang R; Qin J; Zang QJ; Zhang T; Liu ZY
    Zhongguo Gu Shang; 2024 Mar; 37(3):281-7. PubMed ID: 38515416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental and morphometric test of the relationship between vertebral morphology and joint stiffness in Nile crocodiles (Crocodylus niloticus).
    Molnar JL; Pierce SE; Hutchinson JR
    J Exp Biol; 2014 Mar; 217(Pt 5):758-68. PubMed ID: 24574389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From dorsomobility to dorsostability: A study of lumbosacral joint range of motion in artiodactyls.
    Belyaev RI; Kuznetsov AN; Prilepskaya NE
    J Anat; 2022 Aug; 241(2):420-436. PubMed ID: 35616615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional lumbar spine vertebral motion during running using indwelling bone pins.
    MacWilliams BA; Rozumalski A; Swanson AN; Wervey R; Dykes DC; Novacheck TF; Schwartz MH
    Spine (Phila Pa 1976); 2014 Dec; 39(26):E1560-5. PubMed ID: 25341976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional morphology and three-dimensional kinematics of the thoraco-lumbar region of the spine of the two-toed sloth.
    Nyakatura JA; Fischer MS
    J Exp Biol; 2010 Dec; 213(Pt 24):4278-90. PubMed ID: 21113010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.