These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37712920)

  • 1. Semiconducting Polymers for Cancer Immunotherapy.
    Li W; Liang M; Qi J; Ding D
    Macromol Rapid Commun; 2023 Dec; 44(23):e2300496. PubMed ID: 37712920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation.
    Zhou W; He X; Wang J; He S; Xie C; Fan Q; Pu K
    Biomacromolecules; 2022 Apr; 23(4):1490-1504. PubMed ID: 35286085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Sacrificially Degradable Pseudo-Semiconducting Polymer Nanoparticles that Integrate NIR-II Fluorescence Bioimaging, Photodynamic Immunotherapy, and Photo-Activated Chemotherapy.
    Tang D; Yu Y; Zhang J; Dong X; Liu C; Xiao H
    Adv Mater; 2022 Aug; 34(34):e2203820. PubMed ID: 35817731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging Semiconducting Polymer Nanoparticles for Combination Cancer Immunotherapy.
    Wu J; Pu K
    Adv Mater; 2024 Jan; 36(1):e2308924. PubMed ID: 37864513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activatable Semiconducting Polymer Pro-nanomodulators for Deep-Tissue Sono-immunotherapy of Orthotopic Pancreatic Cancer.
    Li J; Yu N; Cui D; Huang J; Luo Y; Pu K
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202305200. PubMed ID: 37194682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared absorbing semiconducting polymer nanomedicines for cancer therapy.
    Li M; Zhao M; Li J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(3):e1865. PubMed ID: 36284504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eosinophil-Activating Semiconducting Polymer Nanoparticles for Cancer Photo-Immunotherapy.
    Zhang C; Huang J; Xu M; Yu J; Wei X; He S; Pu K
    Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202405358. PubMed ID: 38700137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folate receptor-targeting semiconducting polymer dots hybrid mesoporous silica nanoparticles against rheumatoid arthritis through synergistic photothermal therapy, photodynamic therapy, and chemotherapy.
    Li X; Zhang S; Zhang X; Hou Y; Meng X; Li G; Xu F; Teng L; Qi Y; Sun F; Li Y
    Int J Pharm; 2021 Sep; 607():120947. PubMed ID: 34358541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy.
    Li J; Rao J; Pu K
    Biomaterials; 2018 Feb; 155():217-235. PubMed ID: 29190479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the Effect of Chemical Structure of Semiconducting Polymer Nanoparticle on Photothermal Therapy and Photoacoustic Imaging.
    Li D; Zhang G; Xu W; Wang J; Wang Y; Qiu L; Ding J; Yang X
    Theranostics; 2017; 7(16):4029-4040. PubMed ID: 29109796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconducting Polymer Nanoparticles with Surface-Mimicking Protein Secondary Structure as Lysosome-Targeting Chimaeras for Self-Synergistic Cancer Immunotherapy.
    Qi J; Jia S; Kang X; Wu X; Hong Y; Shan K; Kong X; Wang Z; Ding D
    Adv Mater; 2022 Aug; 34(31):e2203309. PubMed ID: 35704513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-Microenvironment-Activatable Polymer Nano-Immunomodulator for Precision Cancer Photoimmunotherapy.
    Liu J; He S; Luo Y; Zhang Y; Du X; Xu C; Pu K; Wang J
    Adv Mater; 2022 Feb; 34(8):e2106654. PubMed ID: 34854147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible semiconducting polymer nanoparticles as robust photoacoustic and photothermal agents revealing the effects of chemical structure on high photothermal conversion efficiency.
    Zhang J; Chen J; Ren J; Guo W; Li X; Chen R; Chelora J; Cui X; Wan Y; Liang XJ; Hao Y; Lee CS
    Biomaterials; 2018 Oct; 181():92-102. PubMed ID: 30081305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic Semiconductors for Photothermal Therapy and Photoacoustic Imaging.
    Wang X; Geng Z; Cong H; Shen Y; Yu B
    Chembiochem; 2019 Jul; 20(13):1628-1636. PubMed ID: 30690811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activatable Cancer Sono-Immunotherapy using Semiconducting Polymer Nanobodies.
    Zeng Z; Zhang C; He S; Li J; Pu K
    Adv Mater; 2022 Jul; 34(28):e2203246. PubMed ID: 35524454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Smart "Sense-and-Treat" Nanoplatform Based on Semiconducting Polymer Nanoparticles for Precise Photothermal-Photodynamic Combined Therapy.
    Bao B; Su P; Song K; Cui Y; Zhai X; Xu Y; Liu J; Wang L
    Biomacromolecules; 2021 Mar; 22(3):1137-1146. PubMed ID: 33577300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmenting Immunogenic Cell Death and Alleviating Myeloid-Derived Suppressor Cells by Sono-Activatable Semiconducting Polymer Nanopartners for Immunotherapy.
    Ding M; Zhang Y; Yu N; Zhou J; Zhu L; Wang X; Li J
    Adv Mater; 2023 Aug; 35(33):e2302508. PubMed ID: 37165741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-Programmable Semiconducting Polymer NanoPROTACs for Deep-Tissue Sonodynamic-Ferroptosis Activatable Immunotherapy.
    Wang F; Dong G; Ding M; Yu N; Sheng C; Li J
    Small; 2024 Feb; 20(8):e2306378. PubMed ID: 37817359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Polymeric Extracellular Matrix Nanoremodeler for Activatable Cancer Photo-Immunotherapy.
    Zhang C; Xu M; Zeng Z; Wei X; He S; Huang J; Pu K
    Angew Chem Int Ed Engl; 2023 Mar; 62(12):e202217339. PubMed ID: 36694443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric STING Pro-agonists for Tumor-Specific Sonodynamic Immunotherapy.
    Yu J; He S; Zhang C; Xu C; Huang J; Xu M; Pu K
    Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202307272. PubMed ID: 37312610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.