These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37713308)

  • 1. Examining PI3K-signaling-dependent regulation of lens organelle free zone formation via immunolocalization and immunoblotting in chick embryos.
    Gheyas R; Menko AS
    STAR Protoc; 2023 Dec; 4(4):102569. PubMed ID: 37713308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of PI3K signaling is linked to autophagy activation and the spatiotemporal induction of the lens organelle free zone.
    Gheyas R; Ortega-Alvarez R; Chauss D; Kantorow M; Menko AS
    Exp Cell Res; 2022 Mar; 412(2):113043. PubMed ID: 35101390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylinositol 3-kinase is necessary for lens fiber cell differentiation and survival.
    Weber GF; Menko AS
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4490-9. PubMed ID: 17003444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells.
    Basu S; Rajakaruna S; Reyes B; Van Bockstaele E; Menko AS
    Autophagy; 2014 Jul; 10(7):1193-211. PubMed ID: 24813396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a.
    Brennan L; Disatham J; Kantorow M
    Exp Eye Res; 2020 Sep; 198():108129. PubMed ID: 32628953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagy and mitophagy participate in ocular lens organelle degradation.
    Costello MJ; Brennan LA; Basu S; Chauss D; Mohamed A; Gilliland KO; Johnsen S; Menko S; Kantorow M
    Exp Eye Res; 2013 Nov; 116():141-50. PubMed ID: 24012988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of autophagy on the formation of organelle-free zone during the lens development.
    Li H; Gao L; Du J; Ma T; Li W; Ye Z; Li Z
    Mol Biol Rep; 2023 May; 50(5):4551-4564. PubMed ID: 36877352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation.
    Brennan LA; McGreal-Estrada R; Logan CM; Cvekl A; Menko AS; Kantorow M
    Exp Eye Res; 2018 Sep; 174():173-184. PubMed ID: 29879393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for screening cellular outputs activated by optogenetically controlled temporal PI3K signaling activation patterns.
    Ueda Y; Matsushita S; Suzuki M; Ozawa T
    STAR Protoc; 2023 Dec; 4(4):102622. PubMed ID: 38059654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The link between inhibition of PI3K signaling, induction of autophagy, and elimination of organelles to form the lens organelle-free zone.
    Sue Menko A
    Autophagy Rep; 2022; 1(1):238-241. PubMed ID: 38126023
    [No Abstract]   [Full Text] [Related]  

  • 11. Autophagy Requirements for Eye Lens Differentiation and Transparency.
    Brennan L; Costello MJ; Hejtmancik JF; Menko AS; Riazuddin SA; Shiels A; Kantorow M
    Cells; 2023 Feb; 12(3):. PubMed ID: 36766820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upregulation and maintenance of gap junctional communication in lens cells.
    Boswell BA; Le AC; Musil LS
    Exp Eye Res; 2009 May; 88(5):919-27. PubMed ID: 19103198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinate signaling by Src and p38 kinases in the induction of cortical cataracts.
    Zhou J; Menko AS
    Invest Ophthalmol Vis Sci; 2004 Jul; 45(7):2314-23. PubMed ID: 15223811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol for observing lipid droplet dynamics in chicken cone cells.
    Pan H; Zhu J; Huang X
    STAR Protoc; 2024 Jun; 5(2):103113. PubMed ID: 38843400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel mitochondrial derived Nuclear Excisosome degrades nuclei during differentiation of prosimian Galago (bush baby) monkey lenses.
    Costello MJ; Gilliland KO; Mohamed A; Schey KL; Johnsen S; Brennan LA; Kantorow M
    PLoS One; 2020; 15(11):e0241631. PubMed ID: 33180800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of organelle elimination for lens development and differentiation.
    Brennan L; Disatham J; Kantorow M
    Exp Eye Res; 2021 Aug; 209():108682. PubMed ID: 34214522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of elevated intraocular oxygen on organelle degradation in the embryonic chicken lens.
    Bassnett S; McNulty R
    J Exp Biol; 2003 Dec; 206(Pt 23):4353-61. PubMed ID: 14581604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells.
    Costello MJ; Brennan LA; Mohamed A; Gilliland KO; Johnsen S; Kantorow M
    PLoS One; 2016; 11(8):e0160785. PubMed ID: 27536868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. αA-Crystallin associates with α6 integrin receptor complexes and regulates cellular signaling.
    Menko AS; Andley UP
    Exp Eye Res; 2010 Nov; 91(5):640-51. PubMed ID: 20709056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick.
    Penha AM; Burkhardt E; Schaeffel F; Feldkaemper MP
    Mol Vis; 2012; 18():2608-22. PubMed ID: 23112573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.