BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37713467)

  • 21. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis.
    Natoli SN; Hartwig JF
    Acc Chem Res; 2019 Feb; 52(2):326-335. PubMed ID: 30693758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and function of the cytochrome P450 peroxygenase enzymes.
    Munro AW; McLean KJ; Grant JL; Makris TM
    Biochem Soc Trans; 2018 Feb; 46(1):183-196. PubMed ID: 29432141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7.
    Murataliev MB; Trinh LN; Moser LV; Bates RB; Feyereisen R; Walker FA
    Biochemistry; 2004 Feb; 43(7):1771-80. PubMed ID: 14967018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the rate-limiting step of the peroxygenase reactions catalyzed by the thermophilic cytochrome P450 from Sulfolobus tokodaii strain 7.
    Hayakawa S; Matsumura H; Nakamura N; Yohda M; Ohno H
    FEBS J; 2014 Mar; 281(5):1409-1416. PubMed ID: 24410761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Riboflavin Is Directly Involved in N-Dealkylation Catalyzed by Bacterial Cytochrome P450 Monooxygenases.
    Zhang C; Lu M; Lin L; Huang Z; Zhang R; Wu X; Chen Y
    Chembiochem; 2020 Aug; 21(16):2297-2305. PubMed ID: 32243060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enabling highly (
    Zhao P; Chen J; Ma N; Chen J; Qin X; Liu C; Yao F; Yao L; Jin L; Cong Z
    Chem Sci; 2021 Mar; 12(18):6307-6314. PubMed ID: 34084428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering Cytochrome P450BM3 Enzymes for Direct Nitration of Unsaturated Hydrocarbons.
    Wang X; Lin X; Jiang Y; Qin X; Ma N; Yao F; Dong S; Liu C; Feng Y; Jin L; Xian M; Cong Z
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202217678. PubMed ID: 36660956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition.
    Shoji O; Aiba Y; Watanabe Y
    Acc Chem Res; 2019 Apr; 52(4):925-934. PubMed ID: 30888147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional modulation of a peroxygenase cytochrome P450: novel insight into the mechanisms of peroxygenase and peroxidase enzymes.
    Matsunaga I; Sumimoto T; Ayata M; Ogura H
    FEBS Lett; 2002 Sep; 528(1-3):90-4. PubMed ID: 12297285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain.
    Burris-Hiday SD; Scott EE
    J Biol Chem; 2023 Sep; 299(9):105112. PubMed ID: 37517692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
    Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR
    J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic Determinants of Alkene Production by the Cytochrome P450 Peroxygenase OleT
    Matthews S; Belcher JD; Tee KL; Girvan HM; McLean KJ; Rigby SE; Levy CW; Leys D; Parker DA; Blankley RT; Munro AW
    J Biol Chem; 2017 Mar; 292(12):5128-5143. PubMed ID: 28053093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of artificial metalloenzymes for the reduction of nicotinamide cofactors.
    Basle M; Padley HAW; Martins FL; Winkler GS; Jäger CM; Pordea A
    J Inorg Biochem; 2021 Jul; 220():111446. PubMed ID: 33865209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating the Active Oxidants Involved in Cytochrome P450 Catalyzed Sulfoxidation Reactions.
    Podgorski MN; Coleman T; Churchman LR; Bruning JB; De Voss JJ; Bell SG
    Chemistry; 2022 Dec; 28(72):e202202428. PubMed ID: 36169207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.