BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37713467)

  • 41. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular Determinants of Substrate Affinity and Enzyme Activity of a Cytochrome P450
    Geronimo I; Denning CA; Heidary DK; Glazer EC; Payne CM
    Biophys J; 2018 Oct; 115(7):1251-1263. PubMed ID: 30224054
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterisation of the heme aqua-ligand coordination environment in an engineered peroxygenase cytochrome P450 variant.
    Podgorski MN; Lee JHZ; Harbort JS; Nguyen GTH; Doherty DZ; Donald WA; Harmer JR; Bruning JB; Bell SG
    J Inorg Biochem; 2023 Dec; 249():112391. PubMed ID: 37837941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. P450BM-3; a tale of two domains--or is it three?
    Peterson JA; Sevrioukova I; Truan G; Graham-Lorence SE
    Steroids; 1997 Jan; 62(1):117-23. PubMed ID: 9029725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
    Alonso-Cotchico L; Rodrı Guez-Guerra J; Lledós A; Maréchal JD
    Acc Chem Res; 2020 Apr; 53(4):896-905. PubMed ID: 32233391
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Compound I Mimic Reveals the Transient Active Species of a Cytochrome P450 Enzyme: Insight into the Stereoselectivity of P450-Catalysed Oxidations.
    Suzuki K; Stanfield JK; Omura K; Shisaka Y; Ariyasu S; Kasai C; Aiba Y; Sugimoto H; Shoji O
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202215706. PubMed ID: 36519803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytically self-sufficient CYP116B5: Domain switch for improved peroxygenase activity.
    Correddu D; Catucci G; Giuriato D; Di Nardo G; Ciaramella A; Gilardi G
    Biotechnol J; 2023 May; 18(5):e2200622. PubMed ID: 36866427
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Small-Molecule Tunnels in Metalloenzymes Viewed as Extensions of the Active Site.
    Banerjee R; Lipscomb JD
    Acc Chem Res; 2021 May; 54(9):2185-2195. PubMed ID: 33886257
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Site-Selective Functionalization of (sp
    Gu Y; Natoli SN; Liu Z; Clark DS; Hartwig JF
    Angew Chem Int Ed Engl; 2019 Sep; 58(39):13954-13960. PubMed ID: 31356719
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Critical residues involved in FMN binding and catalytic activity in cytochrome P450BM-3.
    Klein ML; Fulco AJ
    J Biol Chem; 1993 Apr; 268(10):7553-61. PubMed ID: 8463285
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrogen peroxide supports human and rat cytochrome P450 1A2-catalyzed 2-amino-3-methylimidazo[4,5-f]quinoline bioactivation to mutagenic metabolites: significance of cytochrome P450 peroxygenase.
    Anari MR; Josephy PD; Henry T; O'Brien PJ
    Chem Res Toxicol; 1997 May; 10(5):582-8. PubMed ID: 9168257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes.
    Oohora K; Hayashi T
    Dalton Trans; 2021 Feb; 50(6):1940-1949. PubMed ID: 33433532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Redox-reversible siderophore-based catalyst anchoring within cross-linked artificial metalloenzyme aggregates enables enantioselectivity switching.
    Miller AH; Thompson SA; Blagova EV; Wilson KS; Grogan G; Duhme-Klair AK
    Chem Commun (Camb); 2024 May; 60(42):5490-5493. PubMed ID: 38699837
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450.
    Matsunaga I; Ueda A; Sumimoto T; Ichihara K; Ayata M; Ogura H
    Arch Biochem Biophys; 2001 Oct; 394(1):45-53. PubMed ID: 11566026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the structure and interactions of P450 BM3 using hybrid mass spectrometry approaches.
    Jeffreys LN; Pacholarz KJ; Johannissen LO; Girvan HM; Barran PE; Voice MW; Munro AW
    J Biol Chem; 2020 May; 295(22):7595-7607. PubMed ID: 32303637
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An Evolved Orthogonal Enzyme/Cofactor Pair.
    Reynolds EW; McHenry MW; Cannac F; Gober JG; Snow CD; Brustad EM
    J Am Chem Soc; 2016 Sep; 138(38):12451-8. PubMed ID: 27575374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.