These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37713674)
1. Encapsulation of Selenium Nanoparticles and Metformin in Macrophage-Derived Cell Membranes for the Treatment of Spinal Cord Injury. Liu X; Sun J; Du J; An J; Li Y; Hu Y; Xiong Y; Yu Y; Tian H; Mei X; Wu C ACS Biomater Sci Eng; 2023 Oct; 9(10):5709-5723. PubMed ID: 37713674 [TBL] [Abstract][Full Text] [Related]
2. Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment. Rao S; Lin Y; Lin R; Liu J; Wang H; Hu W; Chen B; Chen T J Nanobiotechnology; 2022 Jun; 20(1):278. PubMed ID: 35701758 [TBL] [Abstract][Full Text] [Related]
3. Glutathione-modified macrophage-derived cell membranes encapsulated metformin nanogels for the treatment of spinal cord injury. Yu Q; Jiang X; Liu X; Shen W; Mei X; Tian H; Wu C Biomater Adv; 2022 Feb; 133():112668. PubMed ID: 35074238 [TBL] [Abstract][Full Text] [Related]
4. Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction. Rao S; Lin Y; Du Y; He L; Huang G; Chen B; Chen T J Mater Chem B; 2019 Apr; 7(16):2648-2656. PubMed ID: 32254998 [TBL] [Abstract][Full Text] [Related]
5. Functional resveratrol-biodegradable manganese doped silica nanoparticles for the spinal cord injury treatment. Jiang X; Liu X; Yu Q; Shen W; Mei X; Tian H; Wu C Mater Today Bio; 2022 Jan; 13():100177. PubMed ID: 34938991 [TBL] [Abstract][Full Text] [Related]
6. Repair spinal cord injury with a versatile anti-oxidant and neural regenerative nanoplatform. Zhou H; Li Z; Jing S; Wang B; Ye Z; Xiong W; Liu Y; Liu Y; Xu C; Kumeria T; He Y; Ye Q J Nanobiotechnology; 2024 Jun; 22(1):351. PubMed ID: 38902789 [TBL] [Abstract][Full Text] [Related]
7. Chitosan-modified hollow manganese dioxide nanoparticles loaded with resveratrol for the treatment of spinal cord injury. Li Y; Zou Z; An J; Wu Q; Tong L; Mei X; Tian H; Wu C Drug Deliv; 2022 Dec; 29(1):2498-2512. PubMed ID: 35903814 [TBL] [Abstract][Full Text] [Related]
8. Sodium alginate and naloxone loaded macrophage-derived nanovesicles for the treatment of spinal cord injury. Liu X; Jiang X; Yu Q; Shen W; Tian H; Mei X; Wu C Asian J Pharm Sci; 2022 Jan; 17(1):87-101. PubMed ID: 35261646 [TBL] [Abstract][Full Text] [Related]
9. Selenium-Doped Carbon Quantum Dots Efficiently Ameliorate Secondary Spinal Cord Injury via Scavenging Reactive Oxygen Species. Luo W; Wang Y; Lin F; Liu Y; Gu R; Liu W; Xiao C Int J Nanomedicine; 2020; 15():10113-10125. PubMed ID: 33363370 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of HIPK2 attenuates spinal cord injury in rats by modulating apoptosis, oxidative stress, and inflammation. Li R; Shang J; Zhou W; Jiang L; Xie D; Tu G Biomed Pharmacother; 2018 Jul; 103():127-134. PubMed ID: 29649627 [TBL] [Abstract][Full Text] [Related]
11. Selenium nanoparticles derived from Liu X; Mao Y; Huang S; Li W; Zhang W; An J; Jin Y; Guan J; Wu L; Zhou P Regen Biomater; 2022; 9():rbac042. PubMed ID: 35855111 [TBL] [Abstract][Full Text] [Related]
12. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction. Andrabi SS; Yang J; Gao Y; Kuang Y; Labhasetwar V J Control Release; 2020 Jan; 317():300-311. PubMed ID: 31805339 [TBL] [Abstract][Full Text] [Related]
13. Using Green Biosynthesized Lycopene-Coated Selenium Nanoparticles to Rescue Renal Damage in Glycerol-Induced Acute Kidney Injury in Rats. Al-Brakati A; Alsharif KF; Alzahrani KJ; Kabrah S; Al-Amer O; Oyouni AA; Habotta OA; Lokman MS; Bauomy AA; Kassab RB; Abdel Moneim AE Int J Nanomedicine; 2021; 16():4335-4349. PubMed ID: 34234429 [TBL] [Abstract][Full Text] [Related]
14. Selenium attenuates ROS-mediated apoptotic cell death of injured spinal cord through prevention of mitochondria dysfunction; in vitro and in vivo study. Yeo JE; Kim JH; Kang SK Cell Physiol Biochem; 2008; 21(1-3):225-38. PubMed ID: 18209489 [TBL] [Abstract][Full Text] [Related]
15. CAQK modification enhances the targeted accumulation of metformin-loaded nanoparticles in rats with spinal cord injury. Li T; Jing P; Yang L; Wan Y; Du X; Wei J; Zhou M; Liu Z; Lin Y; Zhong Z Nanomedicine; 2022 Apr; 41():102526. PubMed ID: 35104674 [TBL] [Abstract][Full Text] [Related]
16. Phycocyanin-Functionalized Selenium Nanoparticles Reverse Palmitic Acid-Induced Pancreatic β Cell Apoptosis by Enhancing Cellular Uptake and Blocking Reactive Oxygen Species (ROS)-Mediated Mitochondria Dysfunction. Liu C; Fu Y; Li CE; Chen T; Li X J Agric Food Chem; 2017 Jun; 65(22):4405-4413. PubMed ID: 28510423 [TBL] [Abstract][Full Text] [Related]
17. Synergistic neuroprotective effects of hyperbaric oxygen and N-acetylcysteine against traumatic spinal cord injury in rat. Zhao X; Zhao X; Wang Z J Chem Neuroanat; 2021 Dec; 118():102037. PubMed ID: 34601074 [TBL] [Abstract][Full Text] [Related]
18. Neuroprotective effects of lycopene in spinal cord injury in rats via antioxidative and anti-apoptotic pathway. Hu W; Wang H; Liu Z; Liu Y; Wang R; Luo X; Huang Y Neurosci Lett; 2017 Mar; 642():107-112. PubMed ID: 28163080 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant and anti-apoptotic effects of selenium nanoparticles and Lactobacillus casei on mice testis after X-ray. Ehghaghi A; Zokaei E; Modarressi MH; Tavoosidana G; Ghafouri-Fard S; Khanali F; Motevaseli E; Noroozi Z Andrologia; 2022 Dec; 54(11):e14591. PubMed ID: 36266770 [TBL] [Abstract][Full Text] [Related]
20. Chitosan-Coated Selenium Nanoparticles Attenuate PRRSV Replication and ROS/JNK-Mediated Apoptosis in vitro. Shao C; Yu Z; Luo T; Zhou B; Song Q; Li Z; Yu X; Jiang S; Zhou Y; Dong W; Zhou X; Wang X; Song H Int J Nanomedicine; 2022; 17():3043-3054. PubMed ID: 35832119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]