These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37713750)
1. Inner filter effect-based upconversion nanosensor for rapid detection of thiram pesticides using upconversion nanoparticles and dithizone-cadmium complexes. Li S; Wu J; Zhang S; Jiao T; Wei J; Chen X; Chen Q; Chen Q Food Chem; 2024 Feb; 434():137438. PubMed ID: 37713750 [TBL] [Abstract][Full Text] [Related]
2. Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography. Charoenkitamorn K; Chailapakul O; Siangproh W Talanta; 2015 Jan; 132():416-23. PubMed ID: 25476326 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. Zhang Y; Wang Y; Liu A; Liu S Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122721. PubMed ID: 37054572 [TBL] [Abstract][Full Text] [Related]
4. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram. Zhu J; Liu MJ; Li JJ; Li X; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():586-593. PubMed ID: 28881284 [TBL] [Abstract][Full Text] [Related]
5. Rapid determination of thiram on apple using a flexible bacterial cellulose-based SERS substrate. Xiao L; Feng S; Hua MZ; Lu X Talanta; 2023 Mar; 254():124128. PubMed ID: 36462280 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence resonance energy transfer between NH Sun L; Wang T; Sun Y; Li Z; Song H; Zhang B; Zhou G; Zhou H; Hu J Talanta; 2020 Jan; 207():120294. PubMed ID: 31594563 [TBL] [Abstract][Full Text] [Related]
7. Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS. Hussain N; Pu H; Sun DW Food Chem; 2021 Jul; 350():129025. PubMed ID: 33609938 [TBL] [Abstract][Full Text] [Related]
8. White-light emissive upconversion nanoparticles for visual and colorimetric determination of the pesticide thiram. Sun H; Mei Q; Shikha S; Liu J; Zhang J; Zhang Y Mikrochim Acta; 2019 Jan; 186(2):106. PubMed ID: 30637510 [TBL] [Abstract][Full Text] [Related]
9. Simple and rapid colorimetric visualization of tetramethylthiuram disulfide (thiram) sensing based on anti-aggregation of gold nanoparticles. Liu K; Jin Y; Wu Y; Liang J Food Chem; 2022 Aug; 384():132223. PubMed ID: 35193014 [TBL] [Abstract][Full Text] [Related]
10. Zinc-Dithizone Complex Engineered Upconverting Nanosensors for the Detection of Hypochlorite in Living Cells. Mei Q; Deng W; Yisibashaer W; Jing H; Du G; Wu M; Li BN; Zhang Y Small; 2015 Sep; 11(35):4568-75. PubMed ID: 26150405 [TBL] [Abstract][Full Text] [Related]
11. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water. Fateixa S; Raposo M; Nogueira HIS; Trindade T Talanta; 2018 May; 182():558-566. PubMed ID: 29501193 [TBL] [Abstract][Full Text] [Related]
12. Facile fabrication of flexible AuNPs@CDA SERS substrate for enrichment and detection of thiram pesticide in water. Yu H; Guo D; Zhang H; Jia X; Han L; Xiao W Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121930. PubMed ID: 36191437 [TBL] [Abstract][Full Text] [Related]
13. Core-shell Au@ZIF-67-based pollutant monitoring of thiram and carbendazim pesticides. Tran HN; Nguyen NB; Ly NH; Joo SW; Vasseghian Y Environ Pollut; 2023 Jan; 317():120775. PubMed ID: 36455771 [TBL] [Abstract][Full Text] [Related]
14. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Hussain A; Sun DW; Pu H Food Chem; 2020 Jul; 317():126429. PubMed ID: 32109658 [TBL] [Abstract][Full Text] [Related]
15. Determination of thiram using gold nanoparticles and Resonance Rayleigh scattering method. Parham H; Pourreza N; Marahel F Talanta; 2015 Aug; 141():143-9. PubMed ID: 25966394 [TBL] [Abstract][Full Text] [Related]
16. Upconversion fluorescence nanosensor based on enzymatic inhibited and copper-triggered o-phenylenediamine oxidation for the detection of dimethoate pesticides. Li S; Zhang S; Wu J; Khan IM; Chen M; Jiao T; Wei J; Chen X; Chen Q; Chen Q Food Chem; 2024 Sep; 453():139666. PubMed ID: 38759443 [TBL] [Abstract][Full Text] [Related]
17. Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Guo J; Li Y; Wang L; Xu J; Huang Y; Luo Y; Shen F; Sun C; Meng R Anal Bioanal Chem; 2016 Jan; 408(2):557-66. PubMed ID: 26521176 [TBL] [Abstract][Full Text] [Related]
18. Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides. Khlebtsov BN; Khanadeev VA; Panfilova EV; Bratashov DN; Khlebtsov NG ACS Appl Mater Interfaces; 2015 Apr; 7(12):6518-29. PubMed ID: 25764374 [TBL] [Abstract][Full Text] [Related]
19. Upconversion nanosensor for sensitive fluorescence detection of Sudan I-IV based on inner filter effect. Fang A; Long Q; Wu Q; Li H; Zhang Y; Yao S Talanta; 2016; 148():129-34. PubMed ID: 26653433 [TBL] [Abstract][Full Text] [Related]
20. [Determination of thiram in wheat flour and flour improvers by high performance liquid chromatography-diode array detection]. Wang X; Zhou S; Li X; Zhang Q Se Pu; 2021 Jun; 39(6):652-658. PubMed ID: 34227326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]