BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37713952)

  • 1. Rotational and translational drags of a Janus particle close to a wall and a lipid membrane.
    Sharma V; Fessler F; Thalmann F; Marques CM; Stocco A
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):2159-2166. PubMed ID: 37713952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational diffusion of partially wetted colloids at fluid interfaces.
    Stocco A; Chollet B; Wang X; Blanc C; Nobili M
    J Colloid Interface Sci; 2019 Apr; 542():363-369. PubMed ID: 30769259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion of micro- and nano- particles interacting with a fluid interface.
    Villa S; Boniello G; Stocco A; Nobili M
    Adv Colloid Interface Sci; 2020 Oct; 284():102262. PubMed ID: 32956958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand-mediated adhesive dynamics of a spherical particle in wall-bound shear flow.
    Ramesh KV; Thaokar R; Prakash JR; Prabhakar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022302. PubMed ID: 25768500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry.
    Chen WL; Chuang HS
    Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of surface effects on the rotational diffusion of a colloidal particle.
    Lobo S; Escauriaza C; Celedon A
    Langmuir; 2011 Mar; 27(6):2142-5. PubMed ID: 21322571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Simulations of the Rotational and Translational Diffusion of a Janus Rod-Shaped Nanoparticle.
    Kharazmi A; Priezjev NV
    J Phys Chem B; 2017 Jul; 121(29):7133-7139. PubMed ID: 28714312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translational and rotational coupling in Brownian rods near a solid surface.
    Neild A; Padding JT; Yu L; Bhaduri B; Briels WJ; Ng TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041126. PubMed ID: 21230257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Spatiotemporal Dynamics of Catalytic Janus Particles with Single-Particle Tracking and Differential Dynamic Microscopy.
    Kurzthaler C; Devailly C; Arlt J; Franosch T; Poon WCK; Martinez VA; Brown AT
    Phys Rev Lett; 2018 Aug; 121(7):078001. PubMed ID: 30169062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes.
    Sigurdsson JK; Atzberger PJ
    Soft Matter; 2016 Aug; 12(32):6685-707. PubMed ID: 27373277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cap weight on the motion of a Janus particle very near a wall.
    Rashidi A; Razavi S; Wirth CL
    Phys Rev E; 2020 Apr; 101(4-1):042606. PubMed ID: 32422805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roughness induced rotational slowdown near the colloidal glass transition.
    Ilhan B; Mugele F; Duits MHG
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1709-1716. PubMed ID: 34592556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Shape on Interaction Dynamics of Tetrahedral Nanoplastics and the Cell Membrane.
    Yong X; Du K
    J Phys Chem B; 2023 Feb; 127(7):1652-1663. PubMed ID: 36763902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational Analysis of Spherical, Optically Anisotropic Janus Particles by Dynamic Microscopy.
    Wittmeier A; Holterhoff AL; Johnson J; Gibbs JG
    Langmuir; 2015 Sep; 31(38):10402-10. PubMed ID: 26352095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of shear flow on the hydrodynamic drag force of a spherical particle near a wall evaluated using optical tweezers and microfluidics.
    Geonzon LC; Kobayashi M; Adachi Y
    Soft Matter; 2021 Sep; 17(34):7914-7920. PubMed ID: 34373877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of particle-wall interactions during particle free fall.
    Chein R; Liao W
    J Colloid Interface Sci; 2005 Aug; 288(1):104-13. PubMed ID: 15927568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Hydrodynamic Interactions on the Near-Surface Diffusion of Spheroidal Molecules.
    Czajka P; Antosiewicz JM; Długosz M
    ACS Omega; 2019 Oct; 4(16):17016-17030. PubMed ID: 31646249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonances arising from hydrodynamic memory in Brownian motion.
    Franosch T; Grimm M; Belushkin M; Mor FM; Foffi G; Forró L; Jeney S
    Nature; 2011 Oct; 478(7367):85-8. PubMed ID: 21979048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.