These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37713952)

  • 21. Experimental system for one-dimensional rotational brownian motion.
    McNaughton BH; Kinnunen P; Shlomi M; Cionca C; Pei SN; Clarke R; Argyrakis P; Kopelman R
    J Phys Chem B; 2011 May; 115(18):5212-8. PubMed ID: 21500841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translational and rotational near-wall diffusion of spherical colloids studied by evanescent wave scattering.
    Lisicki M; Cichocki B; Rogers SA; Dhont JK; Lang PR
    Soft Matter; 2014 Jun; 10(24):4312-23. PubMed ID: 24788942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Burst-by-Burst Measurement of Rotational Diffusion at Nanosecond Resolution Reveals Hot-Brownian Motion and Single-Chain Binding.
    Asgari N; Baaske MD; Orrit M
    ACS Nano; 2023 Jul; 17(13):12684-12692. PubMed ID: 37352134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rotational Fourier tracking of diffusing polygons.
    Mayoral K; Kennair TP; Zhu X; Milazzo J; Ngo K; Fryd MM; Mason TG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051405. PubMed ID: 22181415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring lipid membrane viscosity using rotational and translational probe diffusion.
    Hormel TT; Kurihara SQ; Brennan MK; Wozniak MC; Parthasarathy R
    Phys Rev Lett; 2014 May; 112(18):188101. PubMed ID: 24856725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling and decoupling between translational and rotational dynamics in supercooled monodisperse soft Janus particles.
    Zou QZ; Li ZW; Zhu YL; Sun ZY
    Soft Matter; 2019 Apr; 15(16):3343-3352. PubMed ID: 30951070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anisotropy of Brownian motion caused only by hydrodynamic interaction with a wall.
    Holmqvist P; Dhont JK; Lang PR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021402. PubMed ID: 17025420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diffusion of liquid domains in lipid bilayer membranes.
    Cicuta P; Keller SL; Veatch SL
    J Phys Chem B; 2007 Apr; 111(13):3328-31. PubMed ID: 17388499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Driven Engulfment of Janus Particles by Giant Vesicles in and out of Thermal Equilibrium.
    Sharma V; Marques CM; Stocco A
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall.
    Vitoshkin H; Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Phys Rev Fluids; 2016; 1():. PubMed ID: 27830213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Faxén's correction for a microsphere translating or rotating near a surface.
    Leach J; Mushfique H; Keen S; Di Leonardo R; Ruocco G; Cooper JM; Padgett MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026301. PubMed ID: 19391834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Particle/wall electroviscous effects at the micron scale: comparison between experiments, analytical and numerical models.
    Hernández Meza JM; Vélez-Cordero JR; Ramírez Saito A; Aranda-Espinoza S; Arauz-Lara JL; Yáñez Soto B
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34818642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of particle-particle interactions and particles rotational motion in traveling wave dielectrophoresis.
    Aubry N; Singh P
    Electrophoresis; 2006 Feb; 27(3):703-15. PubMed ID: 16400702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitive single particle method for characterizing rapid rotational and translational diffusion and aspect ratio of anisotropic nanoparticles and its application in immunoassays.
    Zhang B; Lan T; Huang X; Dong C; Ren J
    Anal Chem; 2013 Oct; 85(20):9433-8. PubMed ID: 24059451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamic field around a Brownian particle.
    Keblinski P; Thomin J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):010502. PubMed ID: 16486111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffusion of a Janus nanoparticle in an explicit solvent: A molecular dynamics simulation study.
    Kharazmi A; Priezjev NV
    J Chem Phys; 2015 Jun; 142(23):234503. PubMed ID: 26093564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of Proteins' Rotational Diffusion Coefficients from Simulations of Their Free Brownian Motion in Volume-Occupied Environments.
    Długosz M; Antosiewicz JM
    J Chem Theory Comput; 2014 Jan; 10(1):481-91. PubMed ID: 26579925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid membrane-assisted condensation and assembly of amphiphilic Janus particles.
    Chambers M; Mallory SA; Malone H; Gao Y; Anthony SM; Yi Y; Cacciuto A; Yu Y
    Soft Matter; 2016 Nov; 12(45):9151-9157. PubMed ID: 27796398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular simulation of translational and rotational diffusion of Janus nanoparticles at liquid interfaces.
    Rezvantalab H; Drazer G; Shojaei-Zadeh S
    J Chem Phys; 2015 Jan; 142(1):014701. PubMed ID: 25573572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capillary interactions between particles bound to interfaces, liquid films and biomembranes.
    Kralchevsky PA; Nagayama K
    Adv Colloid Interface Sci; 2000 Mar; 85(2-3):145-92. PubMed ID: 10768480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.