These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37714013)

  • 21. Surrogate-based Bayesian calibration of biomechanical models with isotropic material behavior.
    Römer U; Liu J; Böl M
    Int J Numer Method Biomed Eng; 2022 Apr; 38(4):e3575. PubMed ID: 35094499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A stochastic regression approach to analyzing thermodynamic uncertainty in chemical speciation modeling.
    Weber CL; Vanbriesen JM; Small MS
    Environ Sci Technol; 2006 Jun; 40(12):3872-8. PubMed ID: 16830555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning.
    Nomura Y; Tanaka S; Wang J; Shirato H; Shimizu S; Xing L
    Phys Med Biol; 2021 Mar; 66(6):065029. PubMed ID: 33626513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bayesian deep learning-based
    Lee HH; Kim H
    Magn Reson Med; 2022 Jul; 88(1):38-52. PubMed ID: 35344604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pytc: Open-Source Python Software for Global Analyses of Isothermal Titration Calorimetry Data.
    Duvvuri H; Wheeler LC; Harms MJ
    Biochemistry; 2018 May; 57(18):2578-2583. PubMed ID: 29620867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bayesian approach for quantifying the uncertainty of neutron doses derived from spectrometric measurements.
    Reginatto M
    Radiat Prot Dosimetry; 2006; 121(1):64-9. PubMed ID: 16877470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis-Hastings algorithm.
    Liu X; Xia C; Tang Y; Tu J; Wang H
    Water Sci Technol; 2021 Mar; 83(5):1085-1102. PubMed ID: 33724938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of point source emission in river pollution incidents based on Bayesian inference and genetic algorithm: Inverse modeling, sensitivity, and uncertainty analysis.
    Zhu Y; Chen Z; Asif Z
    Environ Pollut; 2021 Sep; 285():117497. PubMed ID: 34380214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo.
    Fazel M; Wester MJ; Mazloom-Farsibaf H; Meddens MBM; Eklund AS; Schlichthaerle T; Schueder F; Jungmann R; Lidke KA
    Sci Rep; 2019 Sep; 9(1):13791. PubMed ID: 31551452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MCPeSe: Monte Carlo penalty selection for graphical lasso.
    Kuismin M; Sillanpää MJ
    Bioinformatics; 2021 May; 37(5):726-727. PubMed ID: 32805018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bayesian, frequentist, and information geometric approaches to parametric uncertainty quantification of classical empirical interatomic potentials.
    Kurniawan Y; Petrie CL; Williams KJ; Transtrum MK; Tadmor EB; Elliott RS; Karls DS; Wen M
    J Chem Phys; 2022 Jun; 156(21):214103. PubMed ID: 35676145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction.
    Epstein M; Calderhead B; Girolami MA; Sivilotti LG
    Biophys J; 2016 Jul; 111(2):333-348. PubMed ID: 27463136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural stochastic differential equations network as uncertainty quantification method for EEG source localization.
    Wabina RS; Silpasuwanchai C
    Biomed Phys Eng Express; 2023 Feb; 9(2):. PubMed ID: 36368029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robust empirical Bayes approach for Markov chain modeling of air pollution index.
    Alyousifi Y; Ibrahim K; Kang W; Zin WZW
    J Environ Health Sci Eng; 2021 Jun; 19(1):343-356. PubMed ID: 34150239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of parameter uncertainty for non-point source pollution mechanism modeling: A Bayesian-based approach.
    Xueman Y; Wenxi L; Yongkai A; Weihong D
    Environ Pollut; 2020 Aug; 263(Pt A):114570. PubMed ID: 33618467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioprocess optimization under uncertainty using ensemble modeling.
    Liu Y; Gunawan R
    J Biotechnol; 2017 Feb; 244():34-44. PubMed ID: 28137617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme.
    Biehler J; Gee MW; Wall WA
    Biomech Model Mechanobiol; 2015 Jun; 14(3):489-513. PubMed ID: 25245816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying Registration Uncertainty With Sparse Bayesian Modelling.
    Le Folgoc L; Delingette H; Criminisi A; Ayache N
    IEEE Trans Med Imaging; 2017 Feb; 36(2):607-617. PubMed ID: 27831863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction uncertainty assessment of a systems biology model requires a sample of the full probability distribution of its parameters.
    van Mourik S; Ter Braak C; Stigter H; Molenaar J
    PeerJ; 2014; 2():e433. PubMed ID: 25024907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Forecasting and Uncertainty Quantification Using a Hybrid of Mechanistic and Non-mechanistic Models for an Age-Structured Population Model.
    Lagergren J; Reeder A; Hamilton F; Smith RC; Flores KB
    Bull Math Biol; 2018 Jun; 80(6):1578-1595. PubMed ID: 29611108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.